16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90520 Series

MB90522/523/F523/V520

■ DESCRIPTION

The MB90520 series is a general-purpose 16-bit microcontroller developed and designed by Fujitsu for process control applications in consumer products that require high-speed real-time processing.

The instruction set of the F²MC-16LX CPU core inherits AT architecture of the F²MC* family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

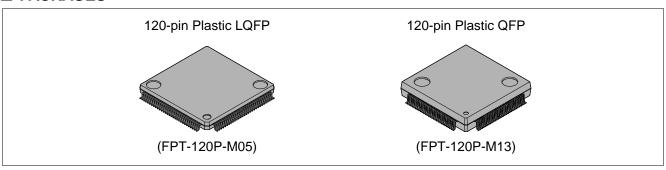
The MB90520 series has peripheral resources of 8/10-bit A/D converter, 8-bit D/A converter, UART (SCI), extended I/O serial interfaces 0 and 1, 8/16-bit up/down counter/timers 0 and 1, 8/16-bit PPG timers 0 and 1, I/O timer (16-bit free-run timers 1 and 2, input captures 0 and 1 (ICU), output compares 0 and 1 (OCU)), and an LCD controller/driver.

*:F2MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.

■ FEATURES

Clock

Embedded PLL clock multiplication circuit


Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).

The system can be operated by a sub-clock (rated at 32.768 kHz).

Minimum instruction execution time: 62.5 ns (at oscillation of 4 MHz, four times the oscillation clock, operation at Vcc of 5.0 V)

(Continued)

■ PACKAGES

(Continued)

· Maximum memory space

16 Mbytes

• Instruction set optimized for controller applications

Rich data types (bit, byte, word, long word)

Rich addressing mode (23 types)

Enhanced signed multiplication/division instruction and RETI instruction functions

Enhanced precision calculation realized by 32-bit accumulator

• Instruction set designed for high level language (C) and multi-task operations

Adoption of system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed
 - 4-byte instruction queue
- Enhanced interrupt function

8 levels, 34 factors

 Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (El²OS): Up to 16 channels

• Embedded ROM size and types

Mask ROM: 64 kbytes/128 kbytes

Flash ROM: 128 kbytes

Embedded RAM size

Mask ROM: 4 kbytes

Flash ROM: 4 kbytes

Evaluation product: 6 kbytes

• Low-power consumption (stand-by) mode

Sleep mode (mode in which CPU operating clock is stopped)

Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode

Hardware stand-by mode

Clock mode (mode in which other than sub-clock and timebase timer are stopped)

Process

CMOS technology

• I/O port

General-purpose I/O ports (CMOS): 53 ports

General-purpose I/O ports (via pull-up resistors): 24 ports

General-purpose I/O ports (open-drain): 8 ports

Total: 85 ports

• Timer

Timebase timer/watchdog timer: 1 channel

8/16-bit PPG timers 0, 1: 8-bit \times 2 channels or 16-bit \times 1 channel

• 16-bit re-load timers 0, 1: 2 channels

(Continued)

• 16-bit I/O timer

16-bit free-run timers 1, 2: 2 channels

Input captures 0, 1 (ICU): Generates an interrupt request by latching a 16-bit free-run timer counter value upon detection of an edge input to the pin.

Output compares 0, 1 (OCU): Generates an interrupt request and reverses the output level upon detection of a match between the 16-bit free-run timer counter value and the compare setting value.

8/16-bit up/down counter/timers 0, 1: 1 channel (8-bit \times 2 channels)

- Extended I/O serial interfaces 0, 1: 1 channel
- UART (SCI)

With full-duplex double buffer

Clock asynchronized or clock synchronized transmission can be selectively used.

• DTP/external interrupt circuit (8 channels)

A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered by an external input.

· Wake-up interrupt

Receives external interrupt requests and generates an interrupt request upon an "L" level input.

· Delayed interrupt generation module

Generates an interrupt request for switching tasks.

• 8/10-bit A/D converter (8 channels)

8/10-bit resolution can be selectively used.

Starting by an external trigger input.

Conversion time: minimum 15.0 µs (at machine clock frequency of 16 MHz, including sampling time)

• 8-bit D/A converter (based on the R-2R system)

8-bit resolution: 2 channels (independent)

Setup time: 12.5 µs

- Clock timer: 1 channel
- LCD controller/driver

A common driver and a segment driver that can directly drive the LCD (liquid crystal display) panel

• Clock output function

Note: Do not set external bus mode for the MB90520 series because it cannot be operated in this mode.

■ PRODUCT LINEUP

Part number Item	MB90522	MB90523	MB90F523	MB90V520	
Classification	Mask ROM product		Flash ROM product	Evaluation product	
ROM size	64 kbytes	128 k	bytes	None	
RAM size		4 kbytes		6 kbytes	
		Instruction length	structions: 351 gth: 8 bits, 16 bits : 1 byte to 7 bytes bit, 8 bits, 16 bits		
CPU functions			ion time: 62.5 ns equency of 16 MHz)		
	(at mad	Interrupt process chine clock frequency	sing time: 1.5 μs of 16 MHz, minimum	ı value)	
Ports	General-purpose I/O ports (CMOS output): 53 General-purpose I/O ports (via pull-up resistor): 24 General-purpose I/O ports (N-ch open-drain output): 8 Total: 85				
UART (SCI)	Clock synchronized transmission (62.5 kbps to 1 Mbps) Clock asynchronized transmission (1202 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.				
Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel only of Scan conversion mode (converts two or more successive channel program up to 8 channels.) Continuous conversion mode (converts selected channel continuous conversion mode (converts selected channel and stop operation)				el only once) channels and can I continuously)	
Number of channels: 1 (8-bit × 2 channels) PPG operation of 8-bit or 16-bit Pulse wave of given intervals and given duty ratios can be out Pulse interval: 62.5 ns to 1 µs (at machine clock frequency of 16				n be output.	
8/16-bit up/down counter/ timers 0, 1	Number of channels: 1 (8-bit × 2 channels) Event input: 6 channels 8-bit up/down counter/timer used: 2 channels 8-bit re-load/compare function supported: 1 channel			ls	
16-bit 16-bit free-run timers 1, 2	Number of channels: 2 Overflow interrupts				

Part number		MB90523	MB90523	MB90F523	MB90V520			
Item								
Output compares 0, 1 (OCU)		Number of channels: 8 Pin input factor: Match signal of compare register						
I/O timer	Input captures 0, 1 (ICU)	Rewriting reg	Number of channels: 2 Rewriting register value upon pin input (rising, falling, or both edges)					
DTP/external	interrupt circuit		ing edge, falling edge	f inputs: 8 e, "H" level input, or " elligent I/O service (E				
Wake-up intrr	upt			f inputs: 8 " level input.				
Delayed interi module	rupt generation	Int		dule for switching tas	sks			
Extended I/O interfaces 0, 1		Clock synchronized transmission (3125 bps to 1 Mbps) LSB first/MSB first						
Timebase tim	er	18-bit counter Interrupt interval: 1.024 ms, 4.096 ms, 16.384 ms, 131.072 ms (at oscillation of 4 MHz)						
8-bit D/A conv	verter	8-bit resolution Number of channels: 2 channels Based on R-2R system						
LCD controller/driver		Number of common output pins: 4 Number of segment output pins: 32 Number of power supply pins for LCD drive: 4 RAM for LCD indication: 16 bytes Booster for LCD drive: Internal Split resistor for LCD drive: Internal						
Watchdog tim	er	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)			s, 458.75 ms			
Low-power co (stand-by) mo	er consumption) mode Sleep/stop/CPU intermittent operation/clock timer/hardware stand			ware stand-by				
Process			CM	IOS				
Power supply operation*	voltage for	3.0 V to 5.5 V 4.0 V to 5.5 V 3.0 V to 5.5			3.0 V to 5.5 V			

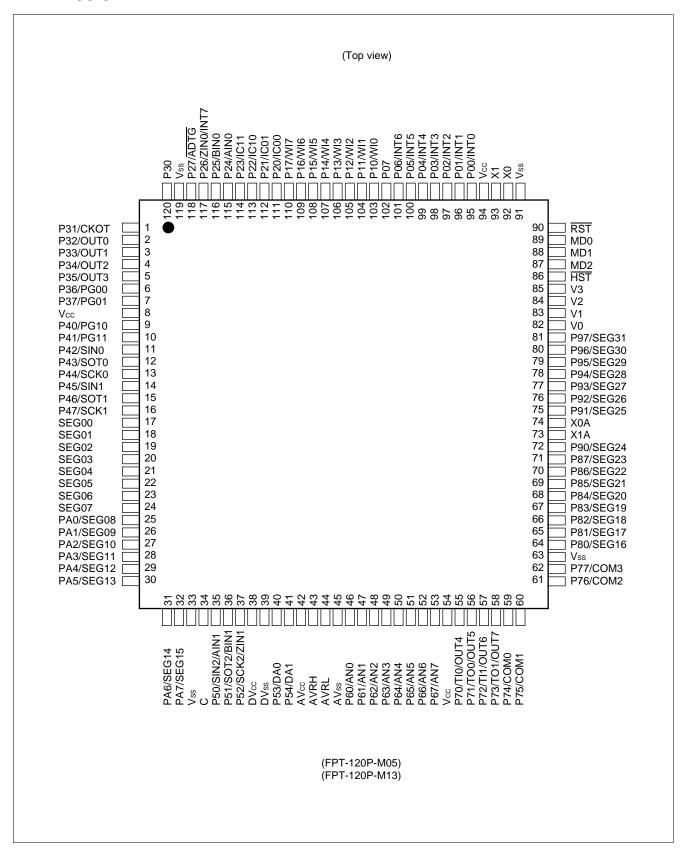
^{*:} Varies with conditions such as the operating frequency. (See section "Electrical Characteristics.")
Assurance for the MB90V520 is given only for operation with a tool at a power voltage of 3.0 V to 5.5 V, an operating temperature of 0 to 55 degrees centigrade, and an operating frequency of 1 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90522	MB90523	MB90F523
FPT-120P-M05	0	0	0
FPT-120P-M13	0	0	0

○ : Available ×: Not available

Note: For more information about each package, see section "■ Package Dimensions."


■ DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation chip, note the difference between the evaluation chip and the chip actually used. The following items must be taken into consideration.

- The MB90V520 does not have an internal ROM. However, operations equivalent to those performed by a chip with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by setting the development tool.
- In the MB90V520, images from FF4000_H to FFFFFF_H are mapped to bank 00, and FE0000_H to FF3FFF_H are mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90522, images from FF4000H to FFFFFH are mapped to bank 00, and FF0000H to FF3FFFH to bank FF only.
- In the MB90523/F523, images from FF4000H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to bank FE and bank FF.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin no.		0: :/		
LQFP-120*1 QFP-120*2	Pin name	Circuit type	Function	
92, 93	X0, X1	А	This is a high-speed crystal oscillator pin.	
74, 73	X0A, X1A	В	This is a low-speed crystal oscillator pin.	
89 to 87	MD0 to MD2	С	This is an input pin for selecting operation modes. Connect directly to Vcc or Vss.	
90	RST	С	This is an external reset request signal input pin.	
86	HST	С	This is a hardware stand-by input pin.	
95 to 101	P00 to P06	D	This is a general-purpose I/O port. This function can be set by the port 0 input pull-up resistor setup register (RDR0) for input. For output, however, this function is invalid.	
	INT0 to INT6		This is a request input pin of the DTP/external interrupt circuit ch.0 to ch.6.	
102	P07	D	This is a general-purpose I/O port. This function can be set by the port 0 input pull-up resistor setup register (RDR0) for input. For output, however, this function is invalid.	
103 to 110	P10 to 17	D	This is a general-purpose I/O port. This function can be set by the port 1 input pull-up resistor setup register (RDR1) for input. For output, however, this function is invalid.	
	WI0 to WI7		This is an I/O pin for wake-up interrupts.	
111, 112, 113, 114	P20, P21, P22, P23	E	This is a general-purpose I/O port.	
	IC00, IC01, IC10, IC11		This is a trigger input pin for input capture (ICU) 0 and 1. Since this input is used as required for input capture 0 and 1 (ICU ch.0, ch.01, ch.10 and ch.11 input operation, output by other functions must be suspended except for intentional operation.	
115	P24	Е	This is a general-purpose I/O port.	
	AIN0		This port can be used as count clock A input for 8/16-bit up/down counter/timer 0.	
116	P25	Е	This is a general-purpose I/O port.	
	BIN0		This port can be used as count clock B input for 8/16-bit up/down counter/timer 0.	

*1: FPT-120P-M05

*2: FPT-120P-M13

Pin no.			
LQFP-120*1 QFP-120*2	Pin name	Circuit type	Function
117	P26	Е	This is a general-purpose I/O port.
	ZIN0		This port can be used as count clock Z input for 8/16-bit up/down counter/timer 0.
	INT7		This is a request input pin of the DTP/external interrupt circuit ch.7.
118	P27	Е	This is a general-purpose I/O port.
	ADTG		This is an external trigger input pin of the 8/10-bit A/D converter. Since this input is used as required for 8/10-bit A/D converter input operation, output by other functions must be suspended except for intentional operation.
120	P30	E	This is a general-purpose I/O port.
1	P31	E	This is a general-purpose I/O port.
	СКОТ		This is a clock monitor function output pin. This function is valid when clock monitor output is enabled.
2 P32		E	This is a general-purpose I/O port. This function becomes valid when waveform output from the OUT0 is disabled.
	OUT0		This is an event output pin for output compare 0 (OCU) ch.0. This function is valid when output for each channel is enabled.
3 P33		E	This is a general-purpose I/O port. This function becomes valid when waveform output from the OUT1 is disabled.
	OUT1		This is an event output pin for output compare 0 (OCU) ch.1. This function is valid when output for each channel is enabled.
4	P34	E	This is a general-purpose I/O port. This function becomes valid when waveform output from the OUT2 is disabled.
	OUT2		This is an event output pin for output compare 0 (OCU) ch.2. This function is valid when output for each channel is enabled.
5	5 P35 E		This is a general-purpose I/O port. This function becomes valid when waveform output from the OUT3 is disabled.
	OUT3		This is an event output pin for output compare 0 (OCU) ch.3. This function is valid when output for each channel is enabled.
6	6 P36		This is a general-purpose I/O port. This function becomes valid when waveform output from the PG00 is disabled.
	PG00		This is an output pin of 8/16-bit PPG timer 0. This function becomes valid when waveform output from PG00 is enabled.

*1: FPT-120P-M05

*2: FPT-120P-M13

Pin no.		0::	
LQFP-120*1 QFP-120*2	Pin name	Circuit type	Function
7	P37	E	This is a general-purpose I/O port. This function becomes valid when waveform output from the PG01 is disabled.
	PG01		This is an output pin of 8/16-bit PPG timer 0. This function becomes valid when waveform output from PG01 is enabled.
9, 10	P40, P41	D	This is a general-purpose I/O port. This function becomes valid when waveform output from the PG10 and PG11 are disabled. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	PG10, PG11		This is an output pin of 8/16-bit PPG timer 1. This function becomes valid when waveform outputs from PG10 and PG11 are enabled.
This function can be set by the		This is a general-purpose I/O port. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.	
	SIN0		This is a serial data input pin of UART (SCI). Because this input is used as required when UART (SCI) is performing input operations, it is necessary to stop outputs by other functions unless such outputs are made intentionally. When using other output functions as well, disable output during SIN operation.
12	12 P43		This is a general-purpose I/O port. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
SOT0			This is a serial data output pin of UART (SCI). This function becomes valid when serial data output from UART (SCI) is enabled.
13	P44	D	This is a general-purpose I/O port. This function can be set by the pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SCK0		This is a serial clock I/O pin of UART (SCI). This function becomes valid when serial clock output from UART (SCI) is enabled.
14	P45	D	This is a general-purpose I/O port. This function can be set by the port 4 input pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SIN1		This is a data input pin for extended I/O serial interface 0. Since this input is used as required for serial data input operation, output by other functions must be suspended except for intentional operation. When using other output functions as well, disable output during SIN operation.

*1: FPT-120P-M05

*2: FPT-120P-M13

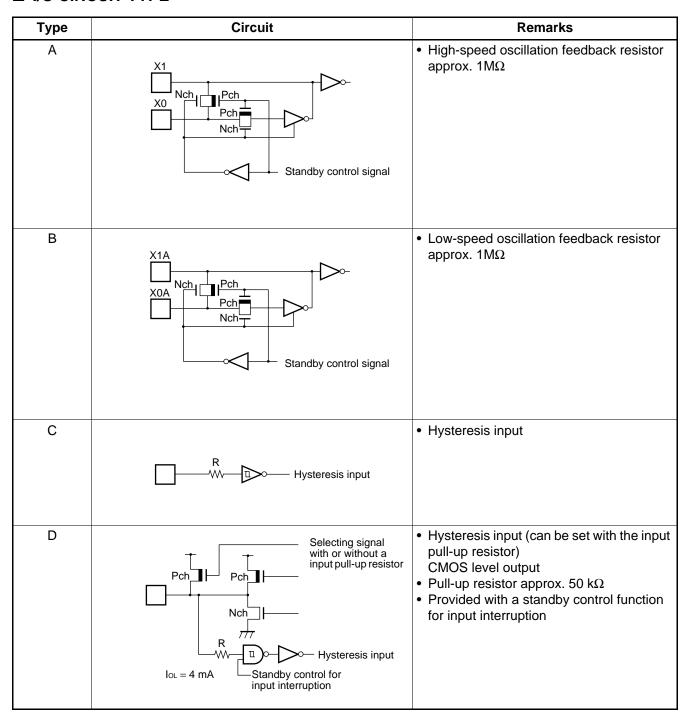
Pin no.		Circuit	
LQFP-120*1 QFP-120*2	Pin name	Circuit type	Function
15	P46	D	This is a general-purpose I/O port. This function can be set by the port 4 input pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SOT1		This is a data output pin for extended I/O serial interface 0. This function becomes valid when serial data output from SOT1 is enabled.
16	P47	D	This is a general-purpose I/O port. This function can be set by the port 4 input pull-up resistor setup register (RDR4) for input. For output, however, this function is invalid.
	SCK1		This is a serial clock I/O pin for extended I/O serial interface 0. This function becomes valid when serial clock output from SCK1 is enabled.
35	P50	D	This is a general-purpose I/O port.
SIN2			This is a data input pin for extended I/O serial interface 1. Since this input is used as required for serial data input operation, output by other functions must be suspended except for intentional operation.
	AIN1		This port can be used as count clock A input for 8/16-bit up/down counter/timer 1.
36	P51	D	This is a general-purpose I/O port.
SOT2 This is a data output pin for o		This is a data output pin for extended I/O serial interface 1. This function becomes valid when serial data output from SOT2 is enabled.	
	BIN1		This port can be used as count clock B input for 8/16-bit up/down counter/timer 1.
37	P52	D	This is a general-purpose I/O port.
	SCK2		This is a serial clock I/O pin for extended I/O serial interface 1. This function becomes valid when serial clock output from serial SCK2 is enabled.
	ZIN1		This port can be used as control clock Z input for 8/16-bit up/down counter/timer 1.
40, 41	P53, P54	I	This is a general-purpose I/O port.
	DA0, DA1		These are analog signal output pins for 8-bit D/A converter ch.0 and ch.1.
46 to 53 P60 to P67 K This is a general-purpose I/O port. The input function become valid when the anaregister (ADER) is set to select a port.		The input function become valid when the analog input enable	
	AN0 to AN7		These are analog input pins of the 8/10-bit A/D converter. This function is valid when the analog input enable register (ADER) is enabled.

*1: FPT-120P-M05

*2: FPT-120P-M13

Pin no.				
LQFP-120*1 QFP-120*2	Pin name	Circuit type	Function	
55, 57	P70, P72	E	This is a general-purpose I/O port.	
	TIO, TI1		These are event input pins for 16-bit re-load timers 0 and 1. Since this input is used as required for 16-bit re-load timers 0 and 1 operation, output by other functions must be suspended except for intentional operation.	
	OUT4, OUT6		These are event output pins for output compare 1 (OCU) ch.4 and ch.6. This function is valid when output for each channel is enabled.	
56, 58	P71, P73	E	This is a general-purpose I/O port. This function is valid when TO0 and TO1 output are disabled.	
	TO0, TO1		These are output pins for 16-bit re-load timers 0 and 1. This function is valid when TO0 and TO1 output are enabled.	
	OUT5, OUT7		These are event output pins for output compare 1 (OCU) ch.5 and ch.7. This function is valid when output for each channel is enabled.	
59 to 62	P74 to P77	L	This is a general-purpose I/O port. This function is valid with port output specified for the LCD controller/driver control register.	
	COM0 to COM3		These are common pins for the LCD controller/driver. This function is valid with common output specified for the LCD controller/driver control register.	
64 to 71	P80 to P87	L	This is a general-purpose I/O port. This function is valid with port output specified for the LCD controller/driver control register.	
	SEG16 to SEG23		These are segment outputs for the LCD controller/driver. This function is valid with segment output specified for the LCD controller/driver control register.	
72, 75 to 81	P90, P91 to P97	M	This is a general-purpose I/O port. The maximum Io∟ can be 10mA. This function is valid with port output specified for the LCD controller/driver control register.	
	SEG24, SEG25 to SEG31		These are segment outputs for the LCD controller/driver. This function is valid with port output specified for the LCD controller/driver control register.	
17 to 24	SEG00 to SEG07	F	These are pins dedicated to LCD segments 00 to 07 for the LCD controller/driver.	
25 to 32	PA0 to PA7	L	This is a general-purpose I/O port. This function is valid with port output specified for the LCD controller/driver control register.	
	SEG08 to SEG15		These are pins for LCD segments 08 to 15 for the LCD controller/driver. Units of four ports or segments can be selected by the internal register in the LCD controller.	

*1: FPT-120P-M05


*2: FPT-120P-M13

(Continued)

Pin no.		Oinevit.		
LQFP-120*1 QFP-120*2	Pin name	Circuit type	Function	
34	С	G	This is a capacitance pin for power supply stabilization. Connect an external ceramic capacitor rated at about 0.1 µF. This capacitor is not, however, required for the M90F523 (flash product).	
82 to 85	V0 to V3	N	This is a pin for the reference power supply for the LCD controller/driver.	
8, 54, 94	Vcc	Power supply	This is a power supply (5.0 V) input pin to the digital circuit.	
33, 63, 91, 119	Vss	Power supply	This provides the GND level (0.0 V) input pin for the digital circuit.	
42	AVcc	Н	This is a power supply for the analog circuit. Make sure to turn on/turn off this power supply with a voltage exceeding AVcc applied to Vcc.	
43	AVRH	J	This is a reference voltage input to the analog circuit. Make sure to turn on/turn off this power supply with a voltage exceeding AVRH applied to AVcc.	
44	AVRL	Н	This is a reference voltage input to the analog circuit.	
45	AVss	Н	This is a GND level of the analog circuit.	
38	DVcc	Н	This is the Vref input pin for the D/A converter. The voltage to be applied must not exceed Vcc.	
39	DVss	Н	This is the GND level pin for the D/A converter. The potential must be the same as Vss.	

*1: FPT-120P-M05 *2: FPT-120P-M13

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
E	Nch Nch Hysteresis input OL = 4 mA Standby control for input interruption	 CMOS hysteresis input/output CMOS level output Provided with a standby control function for input interruption
F	Pch R Nch Nch	Pins dedicated to segment output
G	Pch Nch Nch	C pin output (Pin for capacitor connection) N.C. pin for the MB90F523
Н	Pch AVP	Analog power input protector
	Nch Hysteresis input Standby control for input interruption DAO No. Hysteresis input DAO	 CMOS hysteresis input/output Pin for analog output/CMOS output (During analog output, CMOS output is not produced.) (Analog output has priority over CMOS output: DAE = 1) Provided with a standby control function for input interruption

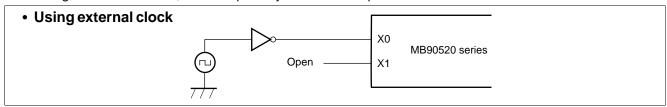
Туре	Circuit	Remarks
J	Pch ANE AVR ANE ANE	Input pin for ref+ power for the A/D converter Provided with power protection
K	Nch Hysteresis input Standby control for input interruption Analog input	 Hysteresis input/analog input CMOS output Provided with a standby control for input interruption
L	Pch Nch Nch Hysteresis input Standby control for input interruption SEG IoL = 4 mA	 CMOS hysteresis input/output Segment input Standby control to cut off the input is available in segment input operation
M	Nch	 Hysteresis input Nch open-drain output (High current for LCD drive) Standby control to cut off the input is available in segment input operation
N	Pch R Nch Nch	Reference power supply pin for the LCD controller
	IoL = 10 mA	

■ HANDLING DEVICES

1. Ensuring that the Voltage does not exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when a voltage exceeding VCC or below VSS is applied to input or output pins or if a voltage exceeding the rating is applied across VCC and VSS.

When a latch-up is caused, the power supply current may be dramatically increased, resulting in thermal breakdown of devices. To avoid the latch-up, make sure that the voltage does not exceed the maximum rating. In turning on/turning off the analog power supply, make sure the analog power voltages (AVCC, AVRH, DVCC) and analog input voltages do not exceed the digital voltage (Vcc).


And also make sure the voltages applied to the LCD power supply pins (V3 to V0) do not exceed the power supply voltage (Vcc).

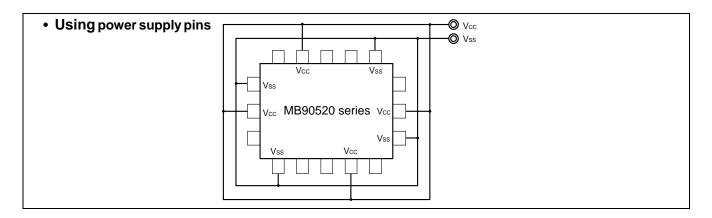
2. Handling Unused Pins

- Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled-up or pull-down through at least 2 kΩ resistance.
- Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

4. Unused Sub Clock Mode


If sub clock modes are not used, the oscillator should be connected to the X0A pin and X1A pin.

5. Power Supply Pins

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-ups. However, the pins should be connected to external powers and ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended that a bypass capacitor of around 0.1 μF be placed between the V_{cc} and V_{ss} pins near the device.

6. Crystal Oscillator Circuit

Noise around the X0 and X1 pins may cause abnormal operation in this device. In designing printed circuit boards, the X0 and X1 pins and crystal oscillator (or ceramic oscillator), as well as the bypass capacitor to the ground, should be placed as close as possible, and the related wiring should have as few crossings with other wiring as possible.

Circuit board artwork in which the area of the X0 and X1 pins is surrounded by grounding is recommended for stabilizing the operation.

7. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVRL, DVcc, DVss) and analog inputs (AN0 to AN7) after turning on the digital power supply (Vcc).

Turn off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that AVRH and DVcc do not exceed AVcc (turning on/off the analog and digital supplies simultaneously is acceptable).

8. Connection of Unused Pins of A/D Converter

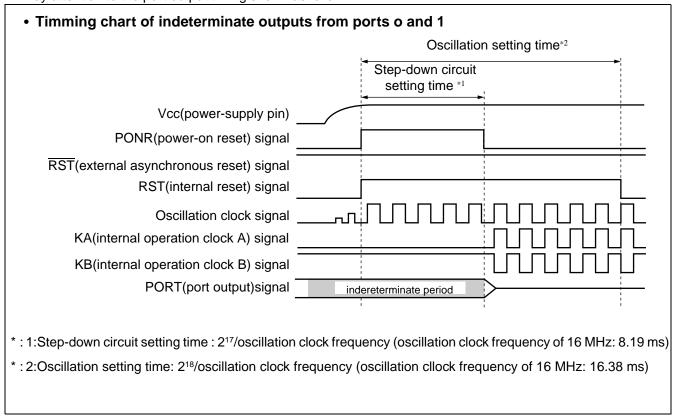
Connect unused pins of A/D converter and those of D/A converter to AVcc = DVcc = Vcc, AVss = AVRH = AVRL = Vss.

9. N.C. Pin

The N.C. (internally connected) pin must be opened for use.

10.Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 µs or more (0.2 V to 2.7 V).


11.Use of SEG/COM Pins for the LCD Controller/Driver as Ports

In MB90520 series, pins SEG08 to SEG31, and COM0 to COM3 can also be used as general-purpose ports. The electrical standard is such that pins SEG08 to SEG23, and COM0 to COM3 have the same ratings as the CMOS output port, while pins SEG24 to SEG31 have the same ratings as the open-drain type.

12.Indeterminate outputs from ports 0 and 1

The outputs from ports 0 and 1 become indeterminate during oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on.

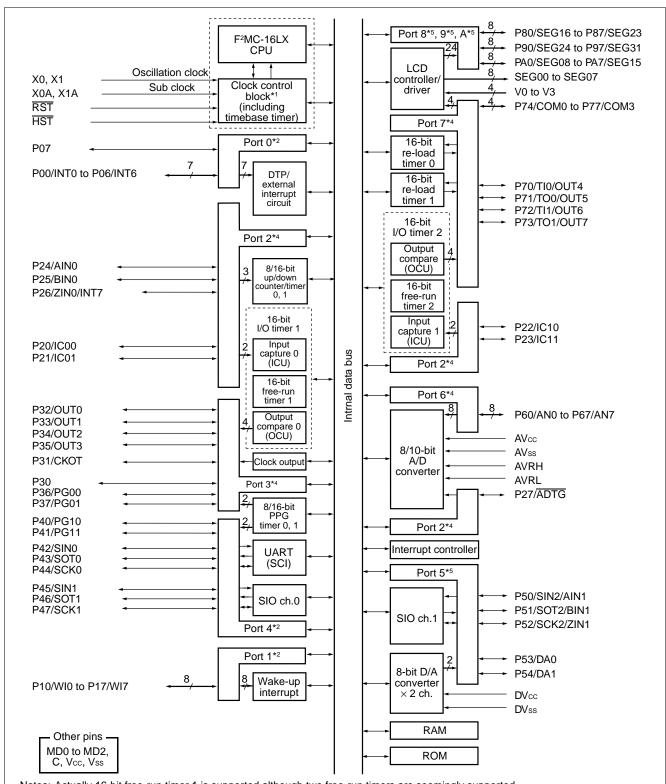
Pay attention to the port output timing shown as follow

13.Initialization

The device contains internal registers that can be initialized only by a power-on reset. To initialize the internal registers, restart the power supply.

14. Interrupt Recovery from Standby

If an external interrupt is used for recovery from standby, use an "H" level input request. An "L" level request causes abnormal operation.


15. Precautions for Use of "DIV A, Ri", and "DIVW A, Ri" Instructions

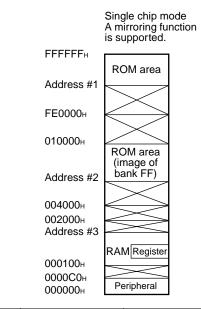
The signed multiplication-division instructions "DIV A, Ri", and "DIVW A, RWi" should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value "00h". If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than "00h," then the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

16. Precautions for Use of REALOS

Extended intelligent I/O service(El²OS) cannot be used, when REALOS is used.

■ BLOCK DIAGRAM

Notes: Actually 16-bit free-run timer 1 is supported although two free-run timers are seemingly supported.


*3: This is a high-current port for an LCD drive.

^{*1:} The clock control circuit comprises a watchdog timer, a timebase timer, and a power consumption controller.
*2: A register for setting a pull-up resistor is supported.

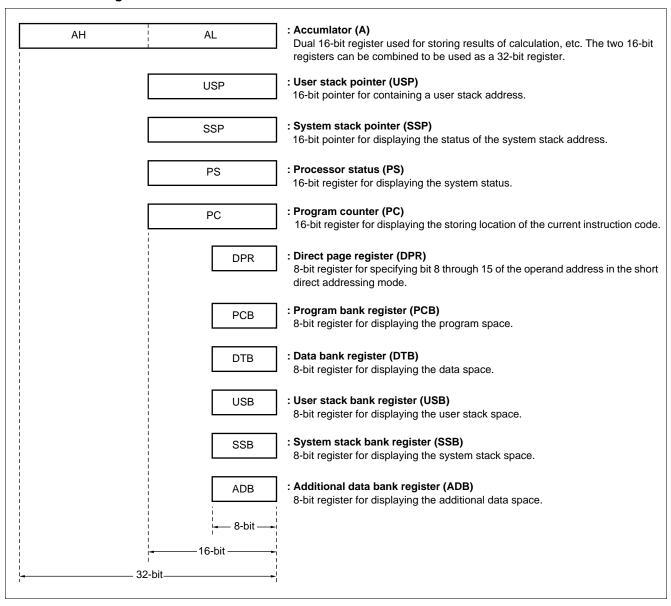
^{*4:} A register for setting a pull-up resistor is supported. Signals in the CMOS level are input and output.

^{*5:} Also used for LCD output. With this port used as is, Nch open-drain output develops. A register for setting a pull-up resistor is supported.

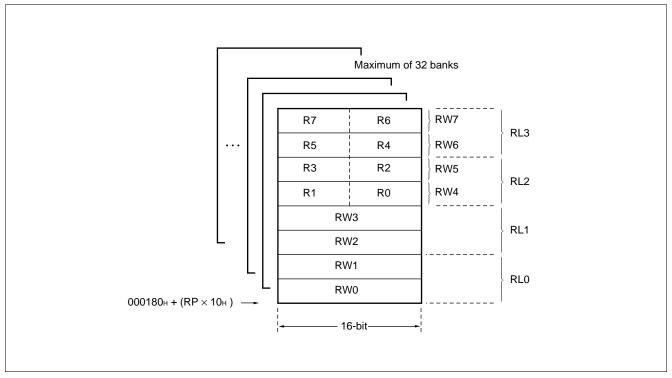
■ MEMORY MAP

Part number	Address #1*	Address #2*	Address #3*
MB90522	FF0000 _H	004000н	001100н
MB90523	FE0000н	004000н	001100н
MB90F523	FE0000н	004000н	001100н

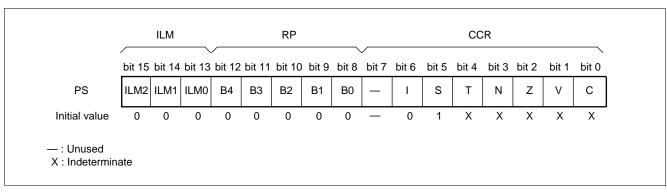
: Internal access memory
: Access prohibited


Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far."

For example, if an attempt has been made to access $00C000_{H}$, the contents of the ROM at FFC000_H are actually accessed. Since the ROM area of the FF bank exceeds 48k bytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000_H to FFFFFF_H looks, therefore, as if it were the image for 00400_{H} to $00FFFF_{H}$. Thus, it is recommended that the ROM data table be stored in the area of FF4000_H to FFFFFF_H.


^{*:} Addresses #1, #2 and #3 vary with product type.

■ F²MC-16LX CPU PROGRAMMING MODEL


· Dedicated registers

• General-purpose registers

• Processor status (PS)

■ I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXX
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXX
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXX
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXX
000006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXX
000007н	PDR7	Port 7 data register	R/W	Port 7	XXXXXXXX
000008н	PDR8	Port 8 data register	R/W	Port 8	XXXXXXXX
000009н	PDR9	Port 9 data register	R/W	Port 9	XXXXXXXX
00000Ан	PDRA	Port A data register	R/W	Port A	XXXXXXXX
00000Вн	LCDCMR	Port 7/COM pin selection register	R/W	Port 7, LCD controller/driver	ХХХХООООВ
00000Сн	OCD4	OCI Learnage register sh 4	D/M	16-bit I/O timer	XXXXXXXX в
00000Дн	OCP4	OCU compare register ch.4	R/W	(output compare 1 (OCU) section)	XXXXXXXX
00000Ен		(Disab	oled)		
00000Fн	EIFR	Wake-up interrupt flag register	R/W	Wake-up interrupt	XXXXXXX0 в
000010н	DDR0	Port 0 direction register	R/W	Port 0	00000000
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000
000015н	DDR5	Port 5 direction register	R/W	Port 5	ХХХОООООВ
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000в
000017н	DDR7	Port 7 direction register	R/W	Port 7	00000000
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000000
000019н	DDR9	Port 9 direction register	R/W	Port 9	00000000
00001Ан	DDRA	Port A direction register	R/W	Port A	00000000в
00001Вн	ADER	Analog input enable register	R/W	Port 6, A/Dconverter	11111111в
00001Сн	0005	OCI I compare resistant la 5	D/\A/	16-bit I/O timer	XXXXXXX
00001Дн	OCP5	OCU compare register ch.5	R/W	(output compare 1 (OCU) section)	XXXXXXXX
00001Ен		(Disab	oled)		
00001Fн	EICR	Wake-up interrupt enable register	W	Wake-up interrupt	00000000в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000020н	SMR	Serial mode register	R/W		00000000
000021н	SCR	Serial control register	R/W or W	UART	00000100в
000022н	SIDR/ SODR	Serial input data register/ serial output data register	R W	(SCI)	XXXXXXX
000023н	SSR	Serial status register	R/W or R		00001Х00в
000024н	SMCSL0	Serial mode control lower status register 0	R/W	Extended I/O	X X X X 0 0 0 0 B
000025н	SMCSH0	Serial mode control upper status register 0	R/W	serial	0000010в
000026н	SDR0	Serial data register 0	R/W	interface 0	XXXXXXXX
000027н	CDCR	Communications prescaler control register	R/W	Communica- tions prescaler control register	0 Х Х Х 1 1 1 1 в
000028н	SMCSL1	Serial mode control lower status register 1	R/W	Extended I/O	X X X X O O O O B
000029н	SMCSH1	Serial mode control upper status register 1	R/W	serial	0000010в
00002Ан	SDR1	Serial data register 1	R/W	interface 1	XXXXXXXX
00002Вн		(Disabled)			
00002Сн	00045	0011	D 44/		0000ХХ00в
00002Dн	2D _H OCS45	OCU control status register ch.45	R/W	16-bit I/O timer (output com-	X X X O O O O O B
00002Ен	00007	0011	D 44/	pare 1 (OCU) section)	0000ХХ00в
00002Fн	OCS67	OCU control status register ch.67	R/W	Section)	X X X O O O O O B
000030н	ENIR	DTP/interrupt enable register	R/W		00000000
000031н	EIRR	DTP/interrupt factor register	R/W	DTP/external	XXXXXXXX
000032н	ELVD.	Decreed by all as win a manister	DAM	interrupt circuit	00000000
000033н	ELVR	Request level setting register	R/W		00000000
000034н				16-bit I/O timer	XXXXXXXX
000035н	OCP6	OCU compare register ch.6	R/W	(output com- pare 1 (OCU) section)	XXXXXXXXB
000036н	ADCS1	A/D control status register lower digits	R/W		00000000
000037н	ADCS2	A/D control status register upper digits	R/W	8/10-bit A/D	00000000
000038н	ADCR1	A/D data register lower digits	R	converter	XXXXXXXX
000039н	ADCR2	A/D data register upper digits	R or W		00001ХХХв
00003Ан	DADR0	D/A converter data register ch.0	R/W		XXXXXXXX
00003Вн	DADR1	D/A converter data register ch.1	R/W	8-bit D/A	XXXXXXXX
00003Сн	DACR0	D/A control register 0	R/W	converter	XXXXXXX0 в
00003Dн	DACR1	D/A control register 1	R/W		XXXXXXX0 в
00003Ен	CLKR	Clock output enable register	R/W	Clock monitor function	XXXX0000B

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00003Fн		(Disabled	i)		
000040н	PRLL0	PPG0 re-load register L	R/W		XXXXXXXX
000041н	PRLH0	PPG0 re-load register H	R/W		XXXXXXXX
000042н	PRLL1	PPG1 re-load register L	R/W		XXXXXXXX
000043н	PRLH1	PPG1 re-load register H	R/W	8/16-bit PPG	XXXXXXXX
000044н	PPGC0	PPG0 operating mode control register	R/W	timer 0, 1	0 Х 0 0 0 Х Х 1 в
000045н	PPGC1	PPG1 operating mode control register	R/W		0 Х 0 0 0 0 0 1 в
000046н	PPGOE0/ PPGOE1	PPG0 and 1 output control registers	R/W		0 0 0 0 0 0 0 0 в
000047н		(Disabled	l)		
000048н	TMOODO	Timer control status register lower ch.0	DAM		00000000
000049н	TMCSR0	Timer control status register upper ch.0	R/W	16-bit re-load	X X X X O O O O B
00004Ан	TMR0/	16-bit timer register upper, lower ch.0/	DAM	timer 0	XXXXXXXX
00004Вн	TMRLR0	16-bit re-load register upper, lower ch.0	R/W		XXXXXXXX
00004Сн	TMCCD4	Timer control status register lower ch.1	DAM		00000000
00004Dн	TMCSR1	Timer control status register upper ch.1	R/W	16-bit re-load	X X X X O O O O B
00004Ен	TMR1/	16-bit timer register upper, lower ch.1/	R/W	timer 1	XXXXXXXX
00004Fн	TMRLR1	16-bit re-load register upper, lower ch.1			XXXXXXXX
000050н	IDODO	ICLI data register als 0	R		XXXXXXXX
000051н	IPCP0	ICU data register ch.0		16-bit I/O timer	XXXXXXXX
000052н	IPCP1	ICLI data register of 1	R	(input compare 0, 1 (ICU) section)	XXXXXXXX
000053н	IPCPT	ICU data register ch.1	K		XXXXXXXX
000054н	ICS01	ICU control status register	R/W		00000000
000055н		(Disabled	l)		
000056н	TCDT1	Free-run timer data register 1	R/W	16-bit I/O timer	00000000
000057н	TODII	rree-run timer data register i	IN/VV	(16-bit free-run	00000000
000058н	TCCS1	Free-run timer control status register 1	R/W	timer 1 section)	00000000
000059н		(Disabled	l)		
00005Ан	OCP0	OCIL compare register ch 0	R/W		XXXXXXXX
00005Вн	UCPU	OCU compare register ch.0	F\$/ VV		XXXXXXXX
00005Сн	OCD4	0004			XXXXXXXX
00005Дн	OCP1	OCU compare register ch.1	R/W	16-bit I/O timer	XXXXXXXX
00005Ен	0000	OCIL compare register ship	D/M	(output compare 0 (OCU) section)	XXXXXXXX
00005Fн	OCP2	OCU compare register ch.2	R/W		XXXXXXXX
000060н	0000	OCIL compare register ship	D/M		XXXXXXXX
000061н	OCP3	OCU compare register ch.3	R/W		XXXXXXXX

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000062н	00004		5.00		0000ХХ00в
000063н	OCS01	OCU control status register ch.01	R/W	16-bit I/O timer	ХХХОООООВ
000064н	00000		DAM	(output compare 0 (OCU) section)	0000ХХ00в
000065н	OCS23	OCU control status register ch.23	R/W		ХХХОООООВ
000066н	TODTO		DAM	16-bit I/O timer	00000000
000067н	TCDT2	Free-run timer data register 2	R/W	(16-bit free-run	00000000
000068н	TCCS2	Free-run timer control status register 2	R/W	timer 2 section)	00000000
000069н		(Disabl	ed)	1	
00006Ан	LCR0	LCDC control registers 0 and 1	R/W	LCD controller/	00010000в
00006Вн	LCR1	LCDC control registers 0 and 1	R/W	driver	00000000
00006Сн				16-bit I/O timer	XXXXXXXX
00006Дн	OCP7	OCU compare register ch.7	R/W	(output compare 1 (OCU) section)	XXXXXXXX
00006Ен		(Disabl	ed)		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1 B
000070н to 00007Fн	VRAM	RAM for LCD indication	R/W	LCD controller/ driver	XXXXXXX
000080н	UDCR0	Up/down count register 0	R		00000000
000081н	UDCR1	Up/down count register 1	R	8/16-bit up/down	00000000
000082н	RCR0	Re-load compare register 0	W	counter/timer	00000000
000083н	RCR1	Re-load compare register 1	W	0, 1	00000000
000084н	CSR0	Counter status register 0	R/W	-	00000000
000085н		(Reserved	area)*3	1	
000086н	CCRL0	Countar control register 0	DAM	8/16-bit up/down	ХОООООООВ
000087н	CCRH0	Counter control register 0	R/W	counter/timer	00000000
000088н	CSR1	Counter status register 1	R/W	0, 1	00000000
000089н		(Reserved	area)*3		
00008Ан	CCRL1			8/16-bit up/down	ХОООООООВ
00008Вн	CCRH1	Counter control register 1	R/W	counter/timer 0, 1	ХОООООООВ
00008Сн	RDR0	Port 0 input pull-up resistor setup register	R/W	Port 0	00000000
00008Dн	RDR1	Port 1 input pull-up resistor setup register	R/W	Port 1	00000000
00008Ен	RDR4	Port 4 input pull-up resistor setup register	R/W	Port 4	0 0 0 0 0 0 0 0 в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00008Fн		1	L		
to 00009Dн		(Area used by the	ne system))*3	
00009Ен	PACSR	Program address detection control status register	R/W	Address match detection function	00000000
00009Fн	DIRR	Delayed interrupt factor generation/cancellation register	R/W	Delayed inter- rupt generation module	ХХХХХХХО в
0000А0н	LPMCR	Low-power consumption mode control register	R/W or W	Low-power	00011000в
0000А1н	CKSCR	Clock select register	R/W or R	consumption (stand-by) mode	11111100в
0000A2н to 0000A7н		(Disabl	ed)		
0000А8н	WDTC	Watchdog timer control register	R or W	Watchdog timer	XXXXXXXX
0000А9н	TBTC	Timebase timer control register	R/W	Timebase timer	1 X X 0 0 0 0 0 B
0000ААн	WTC	Clock timer control register	R/W or R	Clock timer	1 Х О О 1 О О О в
0000ABн to 0000ADн		(Disabl	ed)		
0000АЕн	FMCS	Flash control register	R/W	Flash interface	1 Х Х О О 1 О О в
0000АFн		(Disabl	ed)		
0000В0н	ICR00	Interrupt control register 00	R/W		00000111в
0000В1н	ICR01	Interrupt control register 01	R/W	-	00000111в
0000В2н	ICR02	Interrupt control register 02	R/W	-	00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W		00000111в
0000В4н	ICR04	Interrupt control register 04	R/W		00000111в
0000В5н	ICR05	Interrupt control register 05	R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W	Interrupt	00000111в
0000В7н	ICR07	Interrupt control register 07	R/W	controller	00000111в
0000В8н	ICR08	Interrupt control register 08	R/W		00000111в
0000В9н	ICR09	Interrupt control register 09	R/W		00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W		00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W		00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W		00000111в
0000ВDн	ICR13	Interrupt control register 13	R/W		00000111в

(Continued)

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
0000ВЕн	ICR14	Interrupt control register 14	R/W	Interrupt	00000111в
0000ВГн	ICR15	Interrupt control register 15	R/W	controller	00000111в
0000С0н to 0000FFн		(External a	area)*1		
000100н to 00####н		(RAM are	ea)*²		
00####н to 001FEFн		(Reserved	area)*³		
001FF0н		Program address detection register 0	R/W		ХХХХХХХХ
001FF1н	PADR0	Program address detection register 1	R/W	Address match	XXXXXXXX
001FF2н		Program address detection register 2	R/W	detection	XXXXXXXX
001FF3н		Program address detection register 3	R/W	function	XXXXXXXX
001FF4н	PADR1	Program address detection register 4	R/W		XXXXXXXXB
001FF5н		Program address detection register 5	R/W	1	XXXXXXXX
001FF6н to 001FFFн		(Reserved	area)*³	,	

Descriptions for read/write

R/W: Readable and writable

R: Read only W: Write only

Descriptions for initial value

0 : The initial value is "0."1 : The initial value is "1."

X: The initial value is indeterminate.

- *1: This area is the only external access area having an address of 0000FF_H or lower. An access operation to this area is handled as that to external I/O area.
- *2: For details of the "RAM area", see the memory map.
- *3: The "reserved area" is basically disabled because it is used in the system.
- *4: "Area used by the system" is the area set by the resistor for evaluating tool.
- Notes: For bits initialized by reset operations, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.
 - For LPMCR/CKSCR/WDTC, there are cases in which initialization is performed or not performed, depending on the types of the reset. The value listed is the initial value in cases where initialization is performed.
 - The addresses following 0000FFH are reserved. No external bus access signal is generated.
 - Boundary #### between the "RAM area" and the reserved area" varies with the product models.
 - Channels 0 to 3 of the OCU compare register use 16-bit free-run timer 2, while channels 4 to 7 of the OCU compare register use 16-bit free-run timer 1. 16-bit free-run timer 1 is also used by input captures (ICU) 0 and 1.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTERS

Interrupt course	El ² OS	Interru	ot vector	Interrupt co	Driority	
Interrupt source	support	Number	Address	ICR	Address	Priority
Reset	×	# 08	FFFFDCH	_	_	High
INT9 instruction	×	# 09	FFFFD8 _H	_	_	•
Exception	×	# 10	FFFFD4 _H	_	_	
8/10-bit A/D converter	0	# 11	FFFFD0 _H	ICR00		
Timebase timer	×	# 12	FFFFCCH	ICKUU	ООООБОН	
DTP0/DTP1 (external interrupt 0/ external interrupt 1)	0	# 13	FFFFC8 _H	ICR01	0000В1н	
16-bit free-run timer 1 overflow	×	# 14	FFFFC4 _H	=	ICRUT 0000BTH	
Extended I/O serial interface 0	0	# 15	FFFFC0 _H	ICR02	000000	
Wake-up interrupt	×	# 16	FFFFBCH	ICRU2	0000 6 2H	
Extended I/O serial interface 1	0	# 17	FFFFB8 _H			
DTP2/DTP3 (external interrupt 2/ external interrupt 3)	0	# 18	FFFFB4 _H	ICR03	0000ВЗн	
8/16-bit PPG timer 0 counter borrow	×	# 19	FFFFB0 _H	LODO4 COCCD4		
DTP4/DTP5 (external interrupt 4/ external interrupt 5)	0	# 20	FFFFACH	ICR04 0000В4н		
8/16-bit up/down counter/timer 0 compare match	0	# 21	FFFFA0 _H	ICDOF	000000	
8/16-bit up/down counter/timer 0 overflow up/down inversion	0	# 22	FFFFA4 _H	ICR05	ООООВЭН	
8/16-bit PPG timer 1 counter borrow	×	# 23	FFFFA0 _H	ICR06	000000	
DTP6/DTP7 (external interrupt 6/ external interrupt 7)	0	# 24	FFFF9C _H	ICKUO	ООООВОН	
Output compare 1 (OCU) ch.4/ch.5 match	0	# 25	FFFF98 _H	ICR07	0000В7н	
Clock prescaler	×	# 26	FFFF94 _H			
Output compare 1 (OCU) ch.6/ch.7 match	0	# 27	FFFF90 _H	ICR08	0000В8н	
16-bit free-run timer 2 overflow	×	# 28	FFFF8C _H	=		
8/16-bit up/down counter/timer 1 compare match	0	# 29	FFFF88 _H	ICR09	0000В9н	
8/16-bit up/down counter/timer 1 overflow, up/down inversion	0	# 30	FFFF84 _H	ICKUS	ООООБЭН	
Input capture 0 (ICU) include	0	# 31	FFFF80 _H	ICD40	000000	
Input capture 1 (ICU) include	0	# 32	FFFF7C _H	ICR10	0000ВАн	Low

(Continued)

Interrupt source	El ² OS	Interrup	t vector	Interrupt cor	ntrol register	Priority
interrupt source	support	Number	Address	ICR	Address	Filority
Output compare 0 (OCU) ch.0 match	0	# 33	FFFF78 _H	ICR11	0000ВВн	High
Output compare 0 (OCU) ch.1 match	0	# 34	FFFF74 _H	ICITI	ООООВВН	
Output compare 0 (OCU) ch.2 match	0	# 35	FFFF70 _H	ICR12	0000ВСн	
Output compare 0 (OCU) ch.3 match	0	# 36	FFFF6C _H	ICK12	ООООВСН	
UART (SCI) reception complete	0	# 37	FFFF68 _H	ICR13	0000ВДн	
16-bit re-load timer 0	0	# 38	FFFF64 _H	ICKIS	ООООБЫН	
UART (SCI) transmission complete	0	# 39	FFFF60 _H	ICR14	0000ВЕн	
16-bit re-load timer 1	0	# 40	FFFF5C _H	ICK14	ООООВЕН	
Reserved	×	# 41	FFFF58 _H			▼
Delayed interrupt generation module	×	# 42	FFFF54 _H	ICR15	0000ВFн	Low

○ : Can be used× : Can not be used

○ : Can be used with El²OS stop function

■ PERIPHERALS

1. I/O Port

(1) Input/Output Port

Port 0 through A are general-purpose I/O ports having a combined function as a resource input. The I/O ports can be used as general-purpose I/O ports only in the single-chip mode.

· Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

Note: When a read-modify-write type instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output. However, values of bits configured as inputs by the DDR register are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when switching the bit used as input to output.

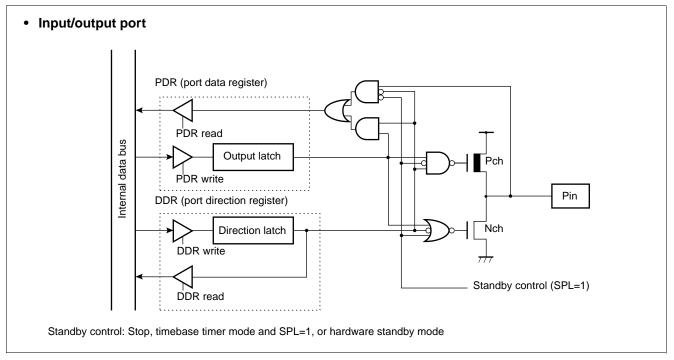
Operation as input port

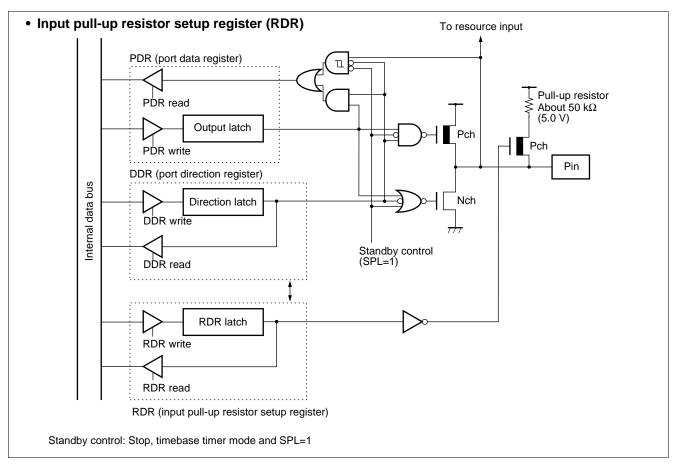
The pin is configured as input by setting the corresponding bit of the DDR register to "0."

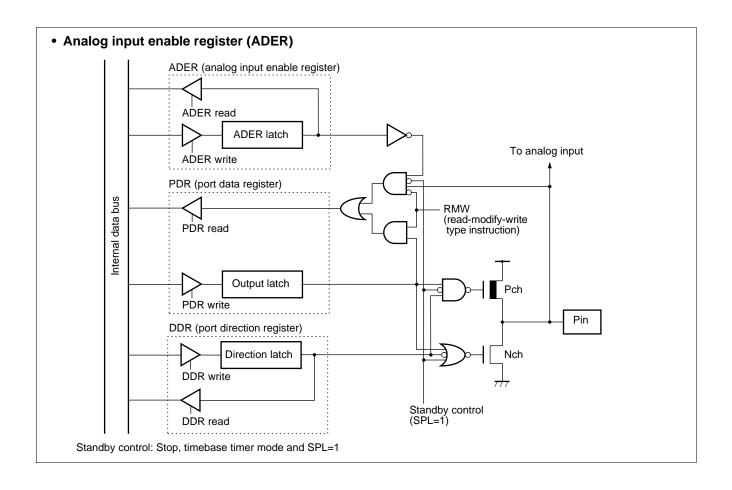
When the pin is configured as an input, the output buffer is turned off and the pin is put into a high-impedance status.

When data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Reading the PDR register reads out the pin level ("0" or "1").

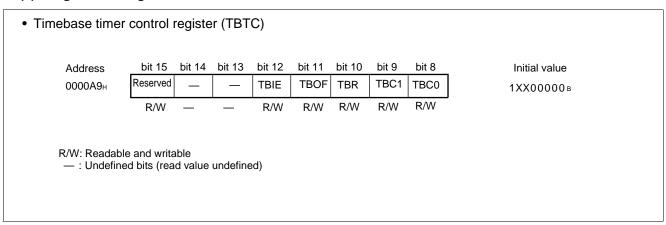

(2) Register Configuration

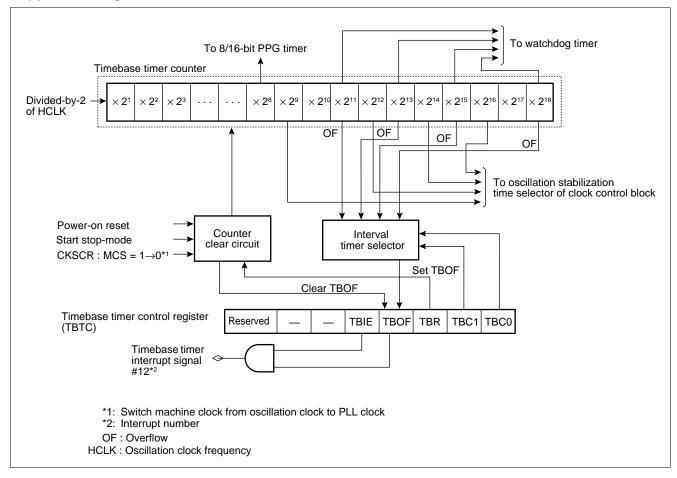

 Port 0 data register (PDR0) 									
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000000н	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXXB
Don't A. John voo Sator (DDDA)	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Port 1 data register (PDR1)	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address 000001 _H	P17	P16	P15	P14	P13	P12	P11	P10	XXXXXXXXB
R/W R/	W R			R/W F	l R/W F	<u> </u> R/W F	R/W		J
• Port 2 data register (PDR2)									
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000002н	P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXXB
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
 Port 3 data register (PDR3) 									
•	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000003н	P37	P36	P35	P34	P33	P32	P31	P30	XXXXXXXXB
L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
 Port 4 data register (PDR4) 									
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000004н	P47	P46	P45	P44	P43	P42	P41	P40	XXXXXXXXB
 Port 5 data register (PDR5) 	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
• , ,	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000005н	_	_	_	P54	P53	P52	P51	P50	XXXXXXXXB
L	_		_	R/W	R/W	R/W	R/W	R/W	J
 Port 6 data register (PDR6) 									
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000006н	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 Port 7 data register (PDR7) 									
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000007н	P77	P76	P75	P74	P73	P72	P71	P70	XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
• Port 8 data register (PDR8)									
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000008н	P87	P86	P85	P84	P83	P82	P81	P80	XXXXXXXXB
L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 Port 9 data register (PDR9) 									
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000009н	P97	P96	P95	P94	P93	P92 R/W	P91 R/W	P90 R/W	XXXXXXXXB
<u>L</u>	R/W	R/W	R/W	R/W	R/W				


Port A data register (PD	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00000AH	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	XXXXXXXXB
OOOOAH	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 0 direction register (. ,								
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000010н	D07	D06	D05	D04	D03	D02	D01	D00	00000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 direction register	(DDR1) bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address	D17	D16	D15	D14	D13	D12	D11	D10	0000000в
000011н	L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 2 direction register (10,77	10,00	10,00	10,00	10,77	10,00	10,00	
_	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
Address	D27	D26	D25	D24	D23	D22	D21	D20	00000000в
000012н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 3 direction register									
Address						bit 10	bit 9	bit 8	Initial value
000013н	D37	D36	D35	D34	D33	D32	D31	D30	0000000в
				R/W	R/W	R/W	R/W	R/W	
Port 4 direction register ((DDR4)								
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000014н	D47	D46	D45	D44	D43	D42	D41	D40	0000000в
Dout C divoction venietov	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 5 direction register	(טאטט) bit 15) bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
Address				D54	D53	D52	D51	D50	ХХХ00000в
000015н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	7,0,000000
Port 6 direction register			IX/VV	IX/ V V	IX/ V V	IX/ V V	IX/ V V	IX/ VV	
_	` ′		bit 5	bit 4	hit 3	bit 2	bit 1	bit 0	Initial value
Address	D67	D66	D65	D64	D63	D62	D61	D60	00000000B
000016н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	0000000
Port 7 direction register			IX/VV	IX/VV	IX/VV	IN/ V V	IX/VV	IX/ VV	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000017н	D77	D76	D75	D74	D73	D72	D71	D70	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 8 direction register ((DDR8)								
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000018н	D87	D86	D85	D84	D83	D82	D81	D80	00000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000019н	D97	D96	D95	D94	D93	D92	D91	D90	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port A direction registe	er (DDR	4)							
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00001Ан	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	0000000 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 0 input pull-up res	sistor set	up reg	ister (R	RDR0)					
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00008Сн	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	0000000 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 1 input pull-up res			•						
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
00008Dн	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	0000000 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 4 input pull-up res	sistor set	up reg	ister (R	RDR4)					
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
00008Ен	RD47	RD46	RD45	RD44	RD43	RD42	RD41	RD40	0000000 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Analog input enable re		,							
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
00001Вн	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Port 7/COM pin select	ion regis	ter (LC	DCMR	R)					
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
00000Вн		_	_	_	СОМЗ	COM2	COM1	COM0	XXXX0000B
		_	_	_	R/W	R/W	R/W	R/W	
	e and writa								

(3) Block Diagram

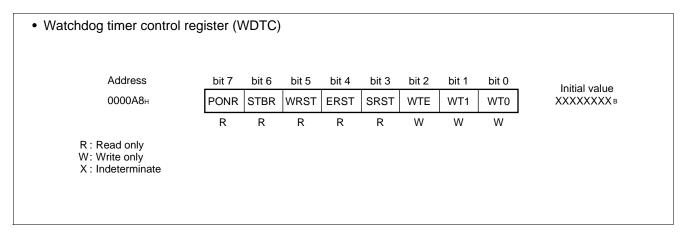


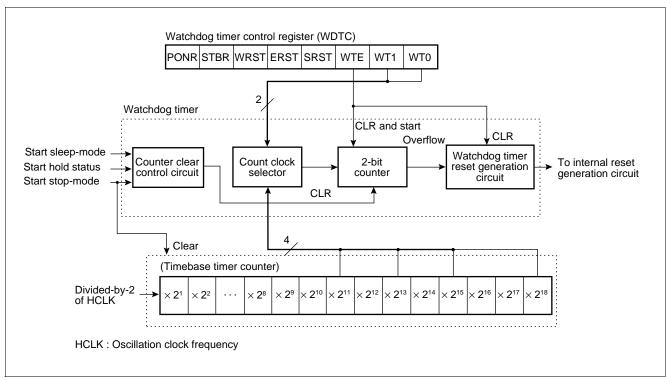

2. Timebase Timer

The timebase timer is a 18-bit free-run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types: 212/HCLK, 214/HCLK, 216/HCLK, and 219/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer, etc.

(1) Register Configuration



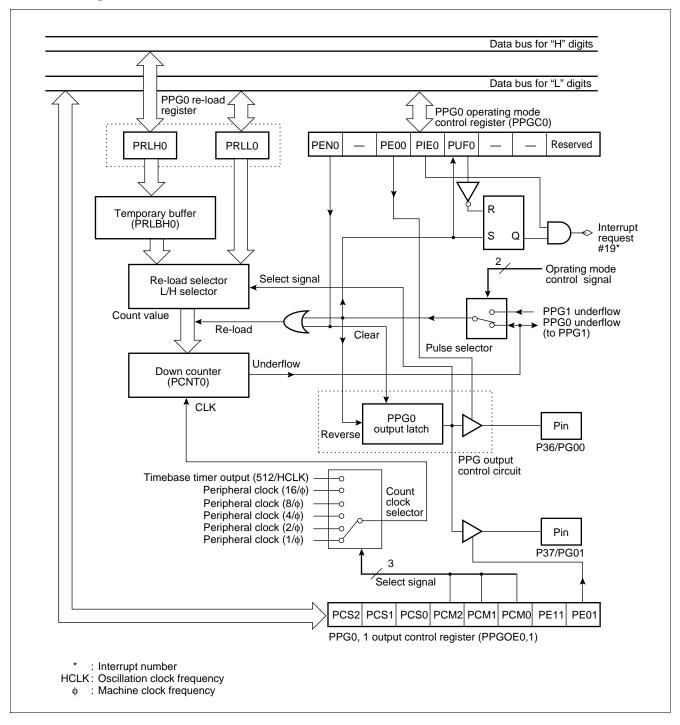


3. Watchdog Timer

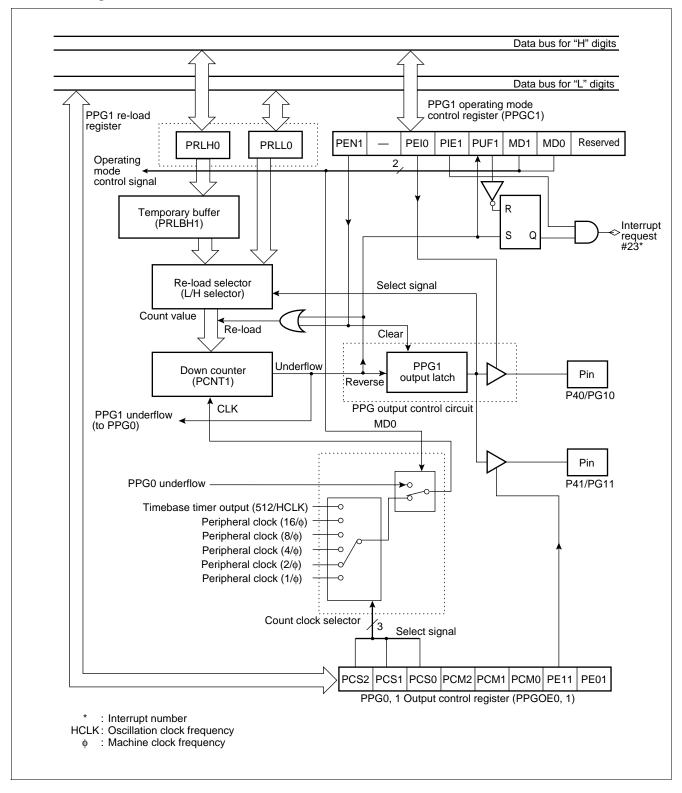
The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

(1) Register Configuration

4. 8/16-bit PPG Timer 0, 1


The 8/16-bit PPG timer is a 2-CH re-load timer module for outputting pulse having given frequencies/duty ratios. The two modules perform the following operation by combining functions.

- 8-bit PPG timer output 2-CH independent output mode
 This is a mode for operating independent 2-CH 8-bit PPG timers, in which PG00 and PG10 pins correspond to outputs from PPG0 and PPG1 respectively.
- 16-bit PPG timer output operation mode
 In this mode, PPG0 and PPG1 are combined to be operated as a 1-CH 8/16-bit PPG timer 0 and 1 operating as a 16-bit timer. Because outputs during 16-bit PPG timer output operation mode are reversed by an underflow from PPG1, the same output pulses are output from PG10 and PG11 pins.
- 8 + 8-bit PPG timer output operation mode
 In this mode, PPG0 is operated as an 8-bit prescaler register, in which an underflow output of PPG0 is used as a clock source for PPG1.
 A prescaler output of PPG0 is output from PG00 and PG01 pins. PPG output of PPG1 is output from PG10 and PG11 pins.
- PPG output operation
 A pulse wave with any period/duty ratio is output. The module can also be used as a D/A converter with an external add-on circuit.

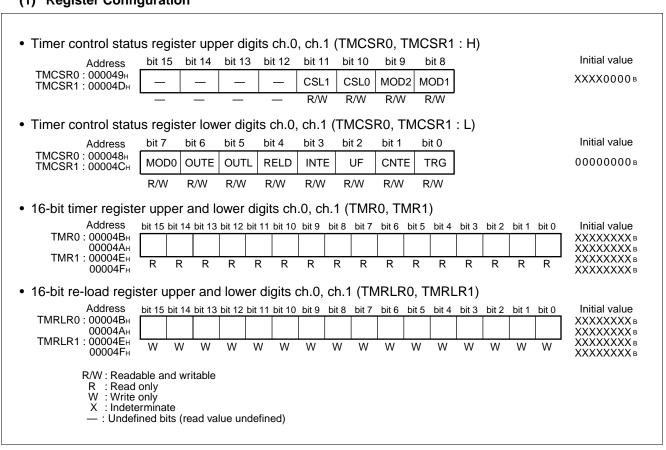

 PPG0 operating mode 	control re	aictor	(DDC)	20)					
• PPG0 operating mode Address	bit 7	bit 6	bit 5	ارک bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000044H	PEN0		PE00	PIE0	PUF0	_	_	Reserved	0X000XX1в
000044H	R/W		R/W	R/W	R/W				UNUUUNNIB
 PPG1 operating mode 		egister			10,00				
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000045н	PEN1		PE10	PIE1	PUF1	MD1	MD0	Reserved	0Х000001в
	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	
 PPG0 output control re 	egister (Pl	PGOE	0)						
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000046н	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	PE11	PE01	00000000 в
5504	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PPG1 output control re	•		,	L:4	h:4 O	F:4 O	Lis d	h:4 O	lattal calca
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000046н	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	PE11	PE01	00000000 в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 PPG0 re-load register 			1 11 40	1 11 40		1 11 40	1 '' 0	1.40	
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000041н									XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 PPG1 re-load register 	H (PRLH	1)							
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	Initial value
000043н									XXXXXXXX B
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 PPG0 re-load register 	L (PRLL0))							
Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000040н									XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
 PPG1 re-load register Address 			L 11 E	b 20. A	b.11.0	b.'. O	6.96.4	h:1.0	Initial value
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value XXXXXXXXB
000042н					5.44				XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
R/W:Readable and v	vritable								
X : Indeterminate — : Undefined bits (i	read value u	ndefine	4)						
. Ondenned bits (i	TOGO VOIGO U		-,						

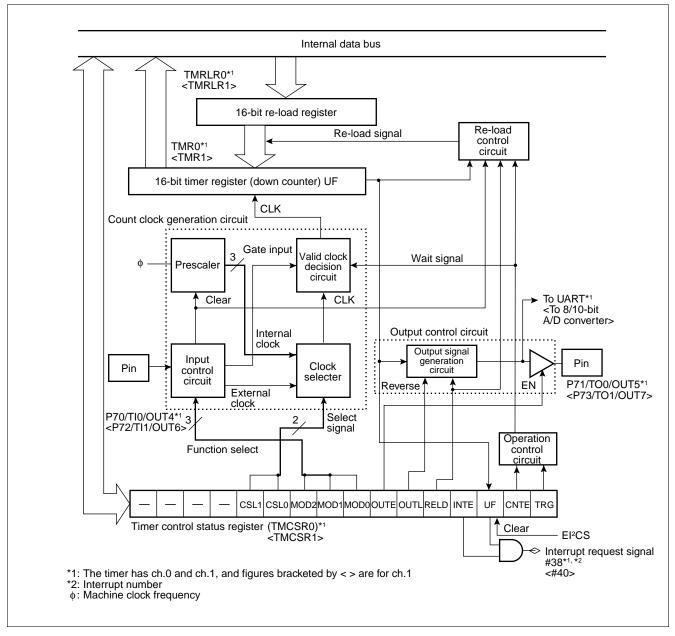
(2) Block Diagram

• Block diagram of 8/16-bit PPG timer 0

• Block diagram of 8/16-bit PPG timer 1

5. 16-bit Re-load Timer 0, 1 (With an Event Count Function)

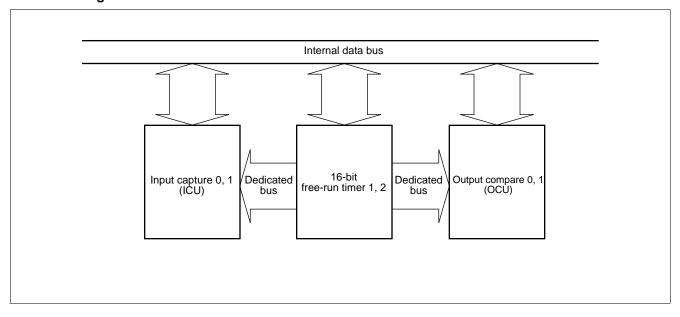

The 16-bit re-load timer has an internal clock mode for counting down in synchronization to three types of internal clocks and an event count mode for counting down by detecting a given edge of the pulse input to the external bus pin. Either of the two functions can be selectively used.


For this timer, an "underflow" is defined as the timing of transition from the counter value of "0000+" to "FFFF+." According to this definition, an underflow occurs after a counter value of [re-load register setting value + 1].

In operating the counter, the re-load mode for repeating counting operation after re-loading a counter value after an underflow or the one-shot mode for stopping the counting operation after an underflow can be selectively used.

Because the timer can generate an interrupt upon an underflow, the timer conforms to the extended intelligent I/O service (EI²OS).

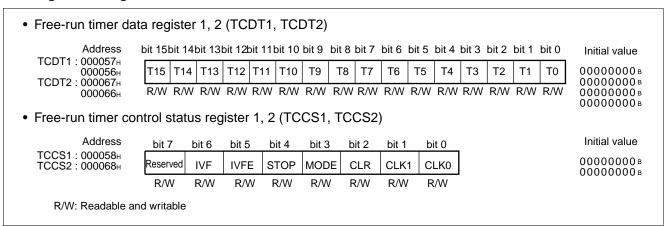
The MB90520 series has 2 channels of 16-bit re-load timers.



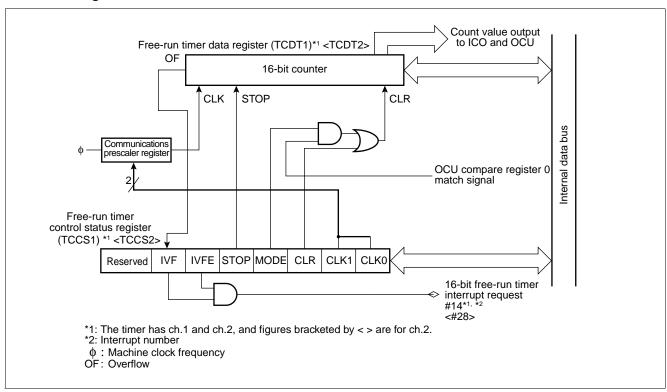
6. 16-bit I/O Timer

The 16-bit I/O timer module consists of two 16-bit free-run timers, two input capture circuits (ICU), and eight output comparators (OCU). This module allows two independent waveforms to be output on the basis of the 16-bit free-run timer. Input pulse width and external clock periods can, therefore, be measured.

• Block diagram



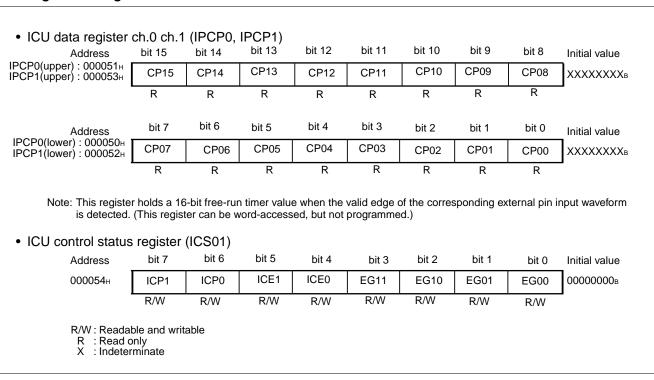
(1) 16-bit Free-run Timer 1, 2


The 16-bit free-run timer consists of a 16-bit up counter, a control register and a communications prescaler register. The value output from the timer counter is used as basic time (base timer) for input capture (ICU) and output compare (OCU).

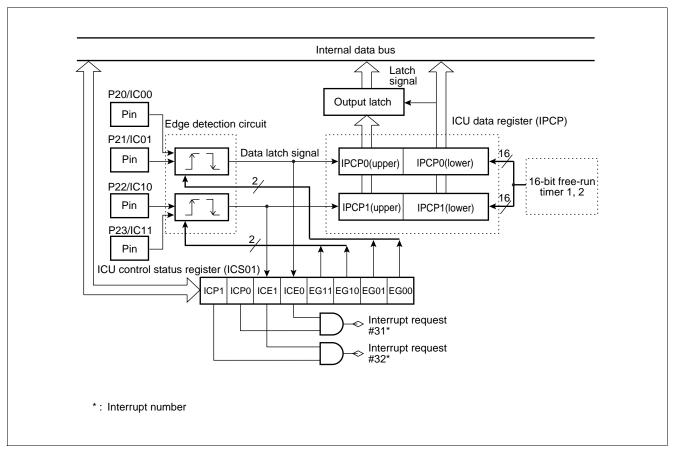
- A counter operation clock can be selected from four internal clocks (φ/4, φ/16, φ/64 and φ/256).
- An interrupt can be generated by overflow of counter value or compare match with OCU compare register 0 and 4. (Compare match requires mode settings.)
- The counter value can be initialized to "0000_H" by a reset, software clear or compare match with OCU compare register 0 and 4.

Register configuration

· Block diagram


(2) Input Capture 0, 1 (ICU)

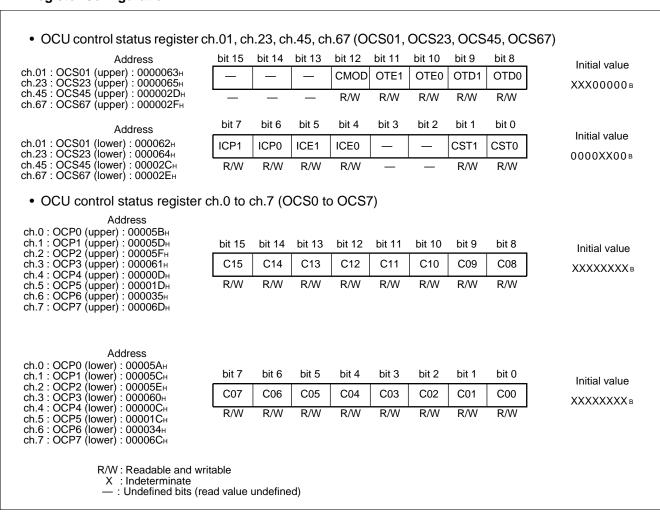
The input capture (ICU) generates an interrupt request to the CPU while storing the current counter value of the 16-bit free-run timer to the ICU data register (IPCP) upon input of a trigger edge from the external pin.


There are two sets (two channels) of input capture external pins and ICU data registers, enabling measurements of a maximum of four events.

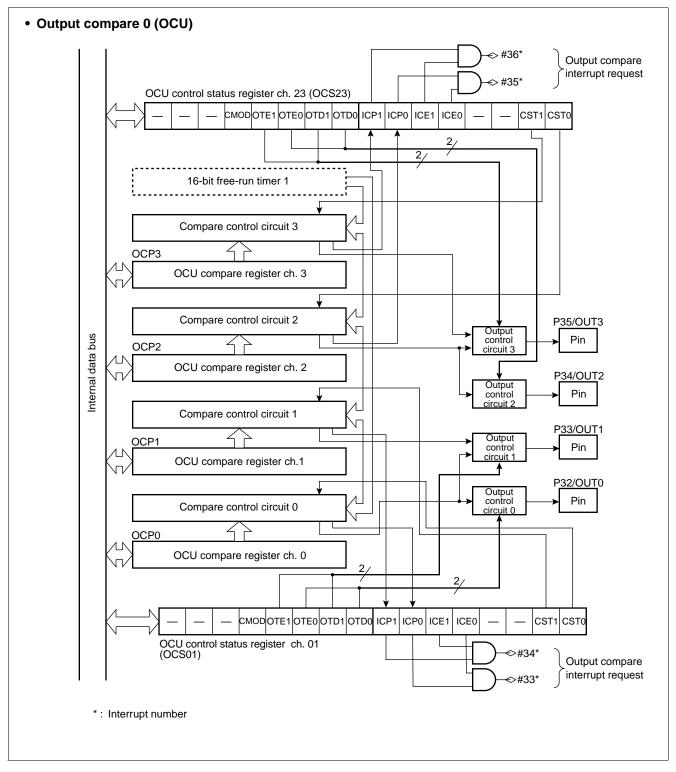
- The input capture has two sets of external input pins (IN0, IN1) and ICU registers (IPCP), enabling measurements of a maximum of four events.
- Trigger edge direction can be selected from rising/falling/both edges.
- The input capture can be set to generate an interrupt request at the storage timing of the counter value of the 16-bit free-run timer to the ICU data register (IPCP).
- The input compare conforms to the extended intelligent I/O service (EI2OS).
- The input capture (ICU) function is suited for measurements of intervals (frequencies) and pulse-widths.

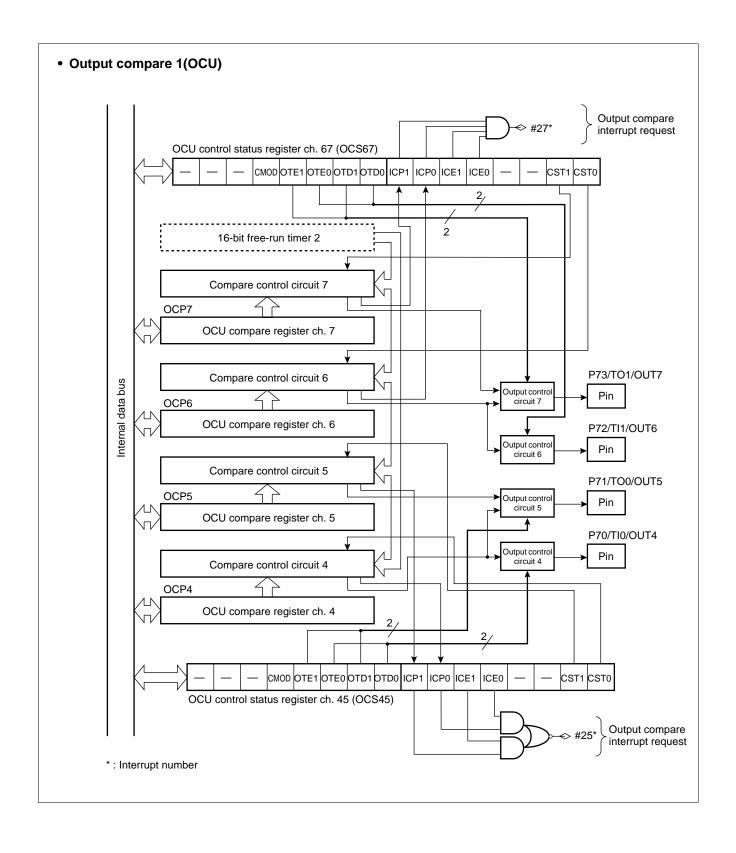
Register configuration

• Block diagram

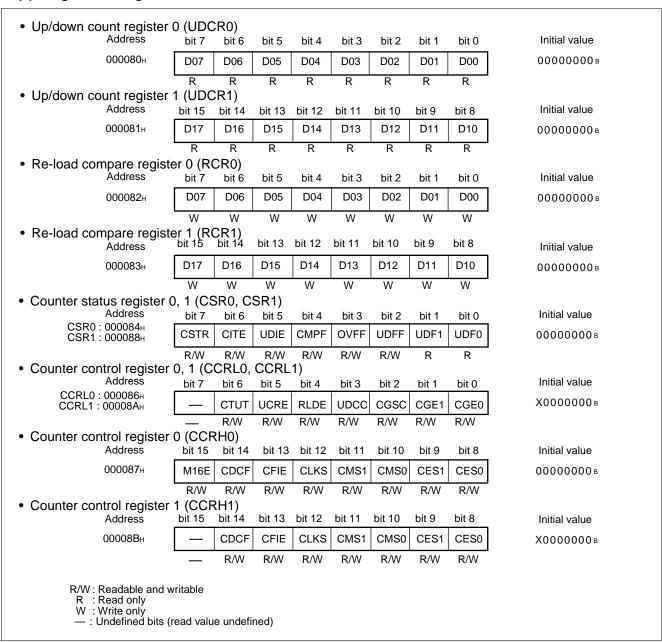


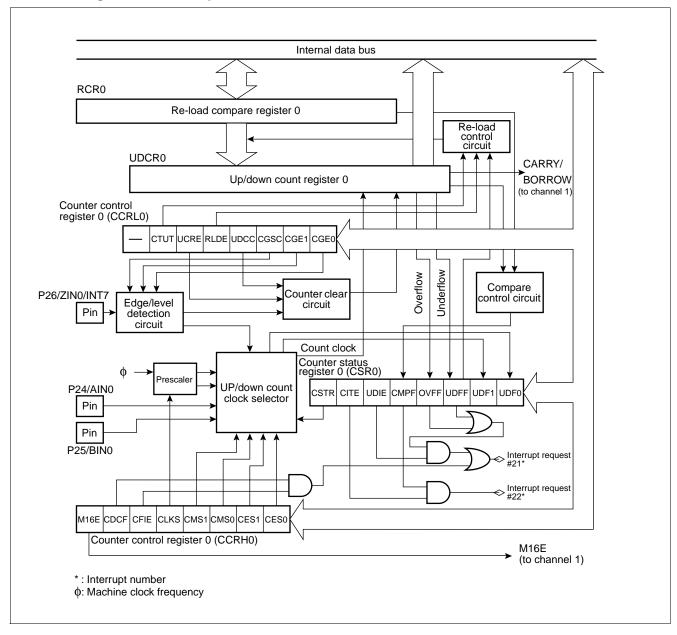
(3) Output Compare 0, 1 (OCU)


The output compare (OCU) is two sets of compare units each consisting of an eight-channel OCU compare register, a comparator and a control register.

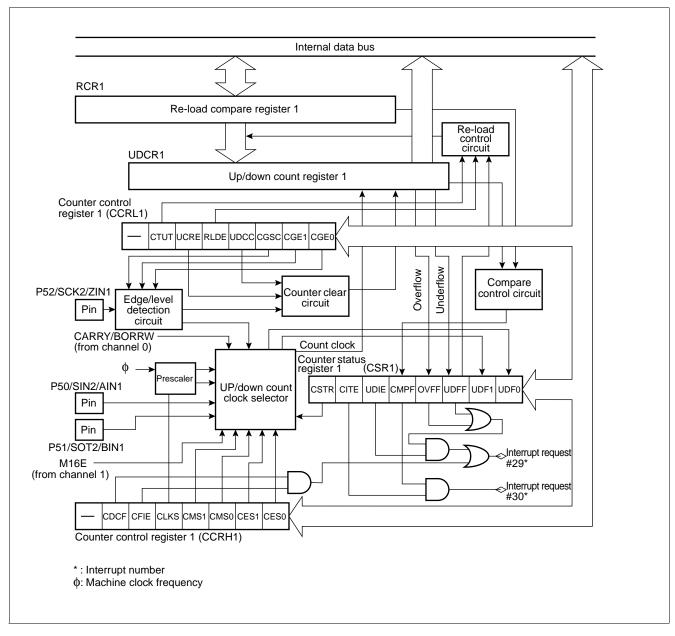

An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 16-bit free-run timer.

The OUT pin can be used as a waveform output pin for reversing output upon a match detection or a general-purpose output port for directly outputting the setting value of the CMOD bit.


• Block diagram

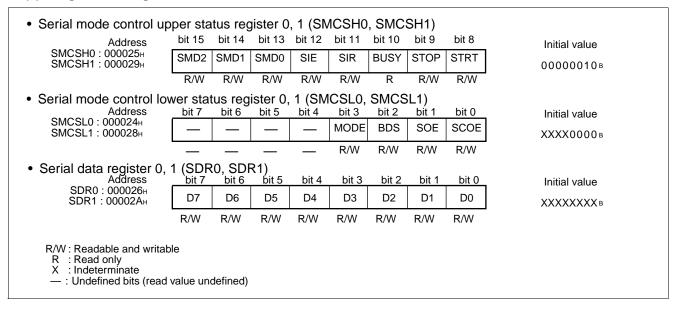

7. 8/16-bit Up/Down Counter/Timer 0, 1

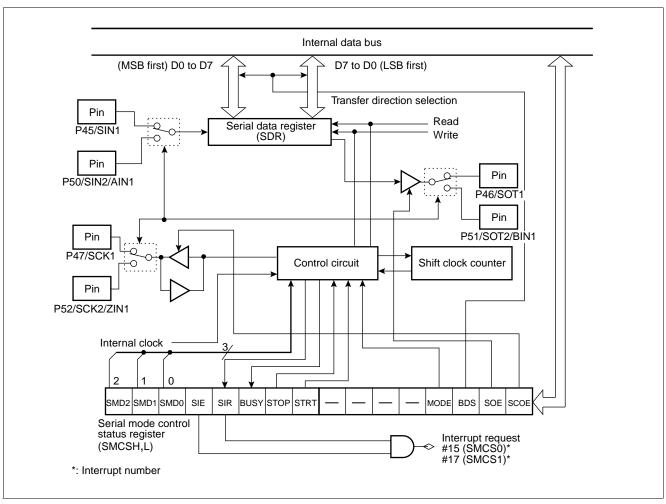
The 8/16-bit up/down counter/timer consists of six event input pins, two 8-bit up/down counters, two 8-bit re-load compare registers, and their controllers.



(2) Block Diagram

• Block diagram of 8/16-bit up/down counter/timer 0


• Block diagram of 8/16-bit up/down counter/timer 1



8. Extended I/O Serial Interface 0, 1

The extended I/O serial interface transfers data using a clock synchronization system having an 8-bit x 1 channel configuration.

For data transfer, you can select LSB first/MSB first.

9. UART (SCI)

UART (SCI) is a general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system).

- Data buffer: Full-duplex double buffer
- Transfer mode:Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

• Baud rate: Embedded dedicated baud rate generator

External clock input possible

Internal clock (a clock supplied from 16-bit re-load timer 0 can be used.)

Asynchronization 9615 bps/31250 bps/4808 bps/2404 bps/1202 bps CLK synchronization 1 Mbps/500 kbps/250 kbps/125 kbps/62.5 kbps

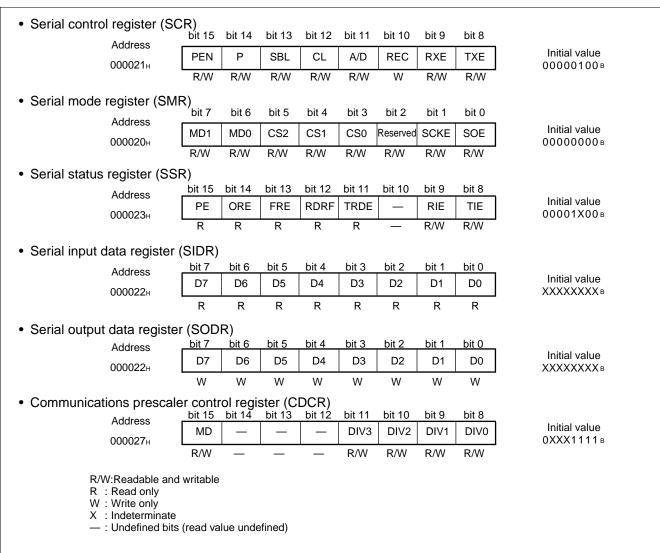
Internal machine clock For 6 MHz, 8 MHz, 10 MHz, 12 MHz and 16 MHz

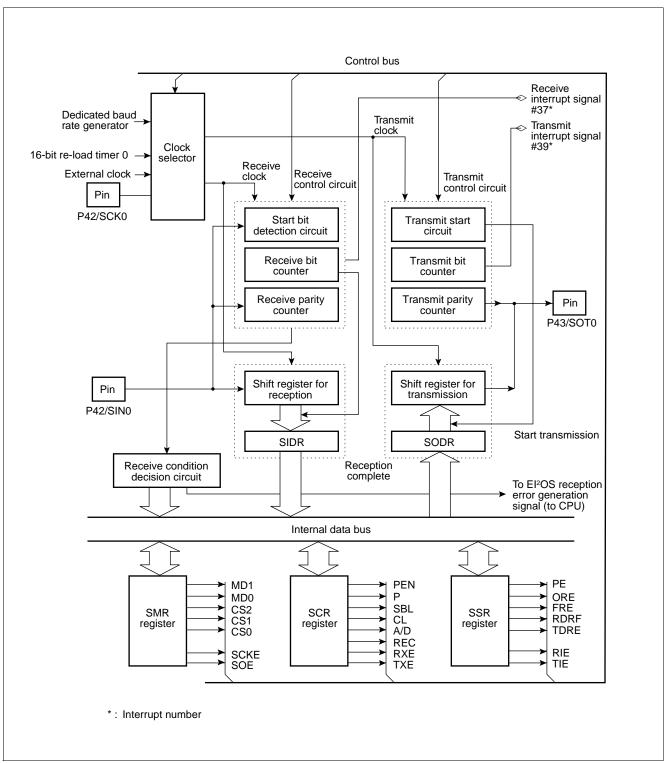
• Data length:8 bit (without a parity bit)

7 bit (with a parity bit)

- Signal format: NRZ (Non Return to Zero) system
- Reception error detection: Framing error

Overrun error

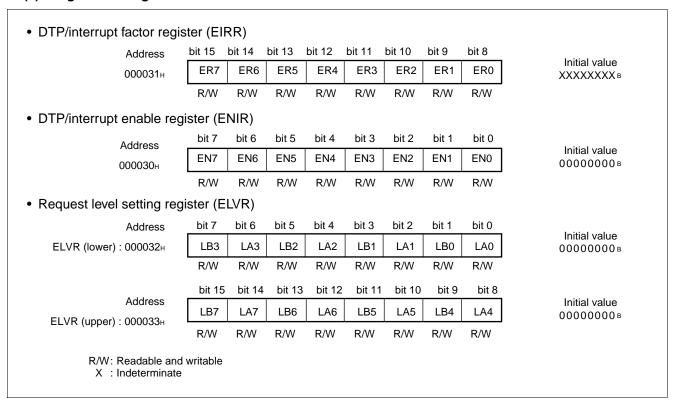

Parity error (multi-processor mode is supported, enabling setup of any baud rate

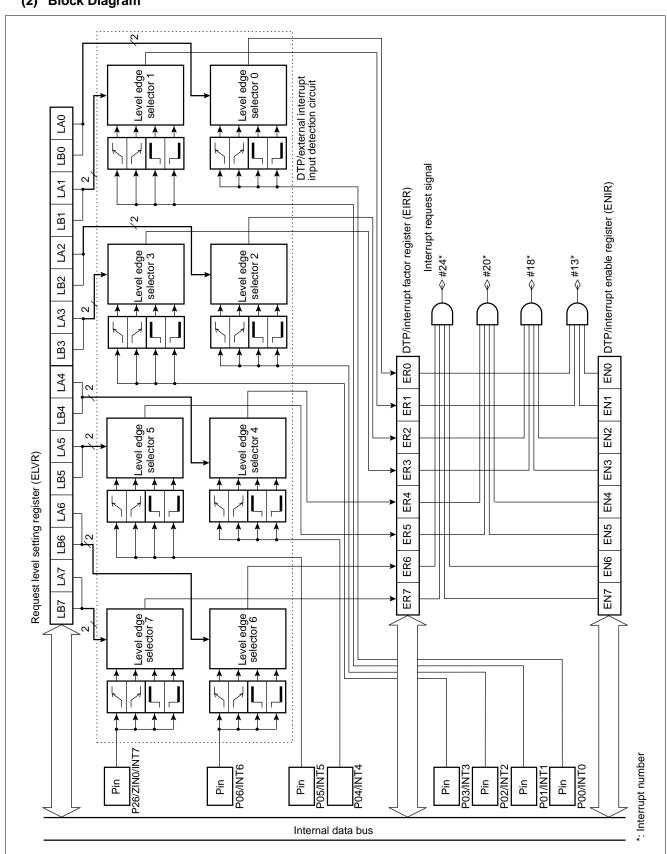

by an external clock.)

• Interrupt request: Receive interrupt (reception complete, receive error detection)

Transmit interrupt (transmisson complete)

Transmit/receive conforms to extended intelligent I/O service (EI2OS)

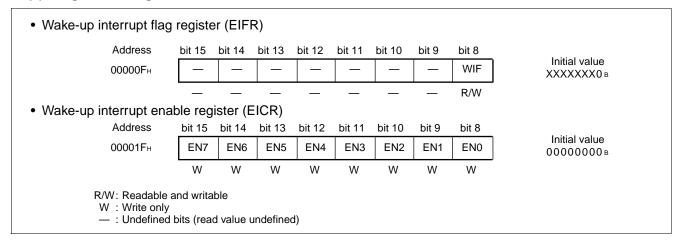


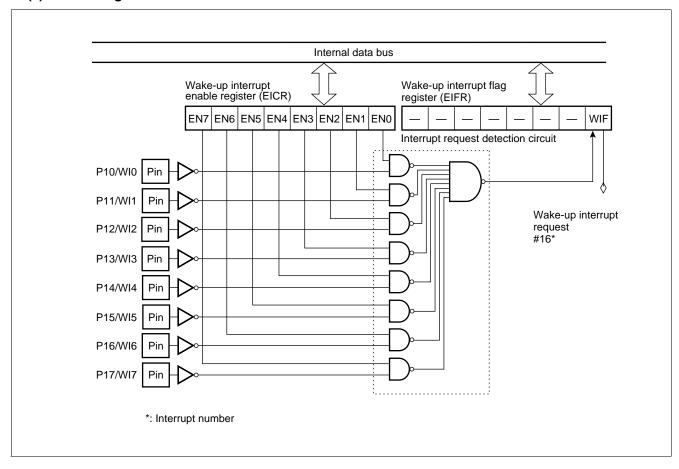


10. DTP/External Interrupt Circuit

The DTP (Data Transfer Peripheral), which is located between the peripheral circuit outside the device and the F²MC-16LX CPU, receives an interrupt request or DMA request generated by the external peripheral circuit* for transmission to the F²MC-16LX CPU. It is used to activate the intelligent I/O service or interrupt processing. As with request levels, two types of "H" and "L" can be selected for the intelligent I/O service. Rising and falling edges as well as "H" and "L" can be selected for an external interrupt request.

*: The external peripheral circuit is connected outside the MB90520 series device.

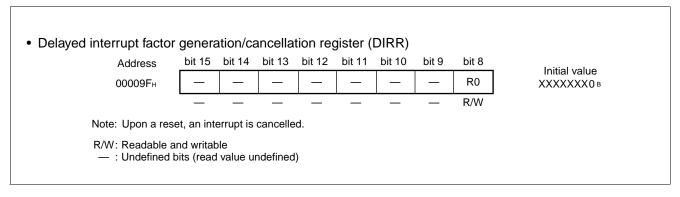



11. Wake-up Interrupt

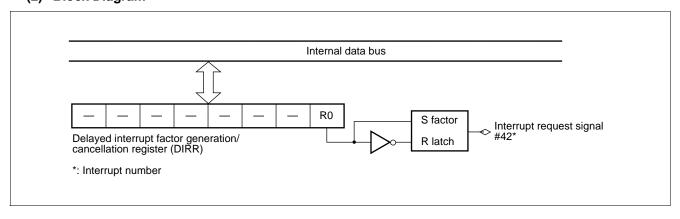
Wake-up interrupts transmit interrupt request ("L" level) generated by peripheral equipment located between external peripheral devices and the F²MC-16LX CPU to the CPU and invoke interrupt processing.

The interrupt does not conform to the exterded intelligent I/O service (EI²OS).

(1) Register Configuration

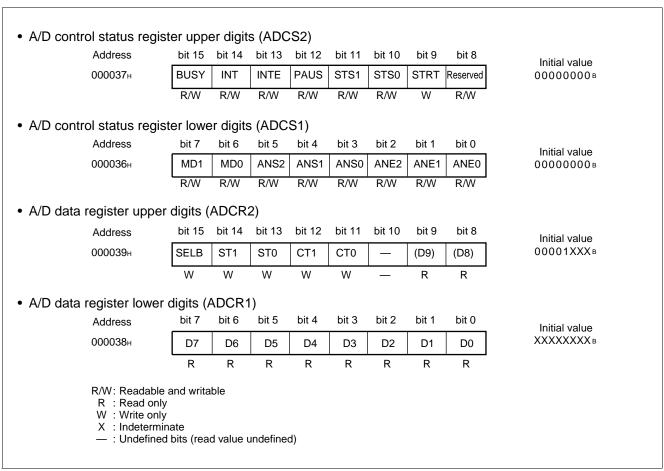


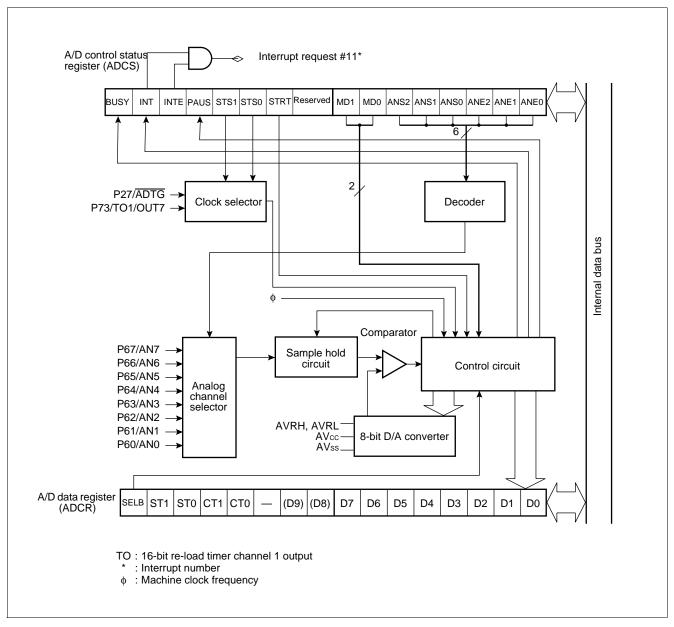
12. Delayed Interrupt Generation Module


The delayed interrupt generation module generates interrupts for switching tasks. By using this module, hardware interrupt requests to the CPU can be generated and cancelled using software.

This module does not conform to the extended intelligent I/O service (EI2OS).

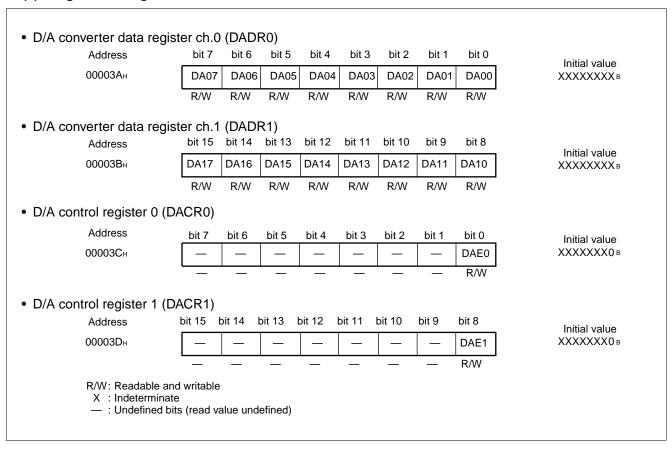
(1) Register Configuration

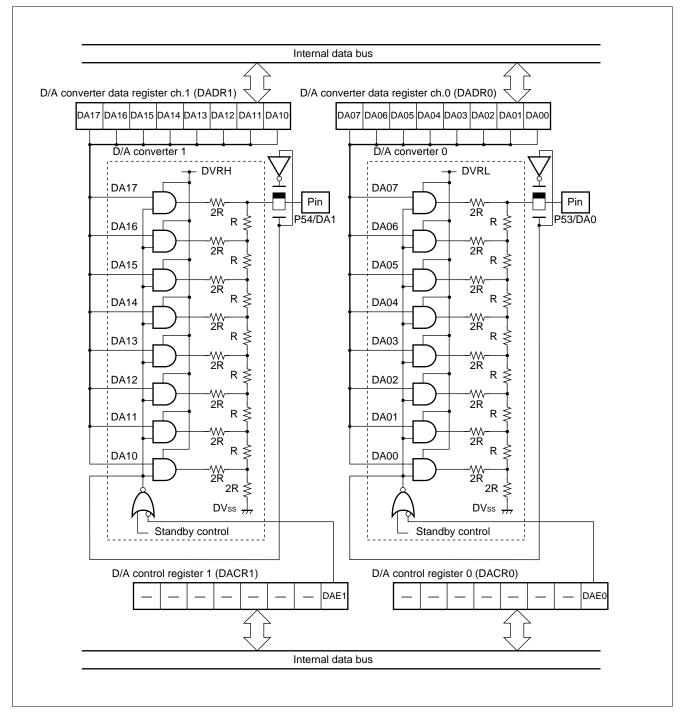

The DIRR is the register used to control delay interrupt request generation/cancellation. Programming this register with "1" generates a delay interrupt request. Programming this register with "0" cancels a delay interrupt request. Upon a reset, an interrupt is canceled. The undefined bit area can be programmed with either "0" or "1." For future extension, however, it is recommended that bit set and clear instructions be used to access this register.



13. 8/10-bit A/D Converter

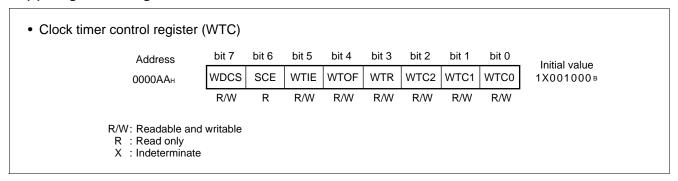
The 8/10-bit A/D converter converts analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features:

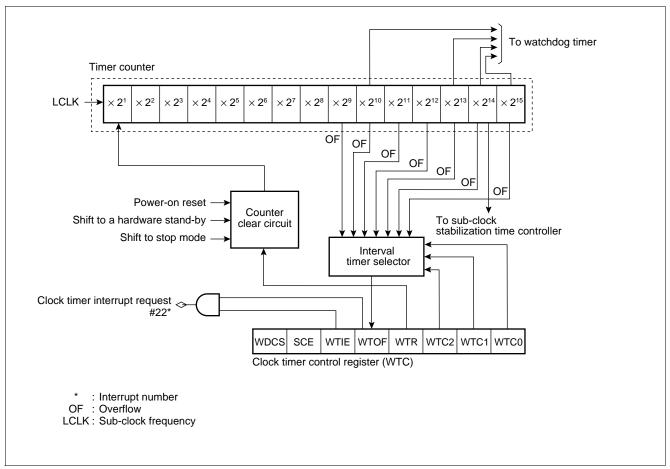

- Minimum conversion time: minimum 15.0 μs (at machine clock frequency of 16 MHz, including sampling time)
- Minimum sampling period: 4 μs/8 μs (at machine clock frequency of 16 MHz)
- Compare time: 99/176 machine cycles per channel (99 machine cycles are used for a machine clock frequency below 10 MHz.)
- Conversion method: RC successive approximation method with a sample and hold circuit
- 8/10-bit resolution
- Analog input pins: Selectable from eight channels by software Single conversion mode: Selects and converts one channel.
 - Scan conversion mode: Converts two or more successive channels. Up to eight channels can be programmed. Continuous conversion mode: Repeatedly converts specified channels.
 - Stop conversion mode: Stops conversion after completing a conversion for one channel and wait for the next activation (conversion can be started synchronously).
- Interrupt requests can be generated and the extended intelligent I/O service (EI2OS) can be started after the end of A/D conversion. Furthermore, A/D conversion result data can be transferred to the memory, enabling efficient continuous processing.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion: Selectable from software activation, external trigger (falling edge) and timer (rising edge).



14. 8-bit D/A Converter

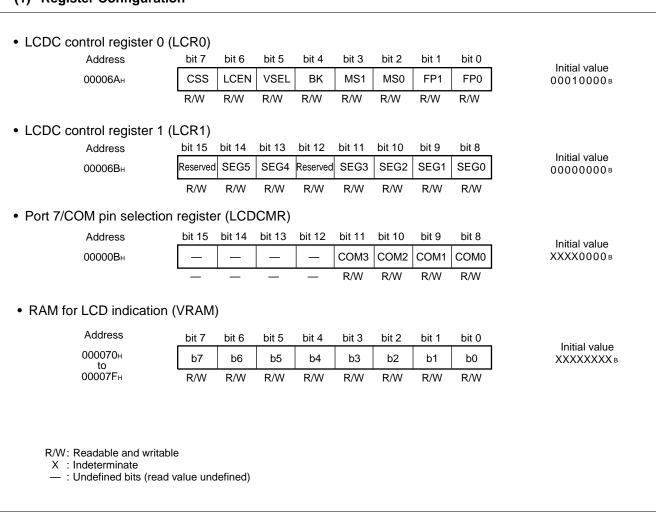
The 8-bit D/A converter, which is based on the R-2R system, supports 8-bit resolution mode. It contains two channels, each of which can be controlled in terms of output by the D/A control register.

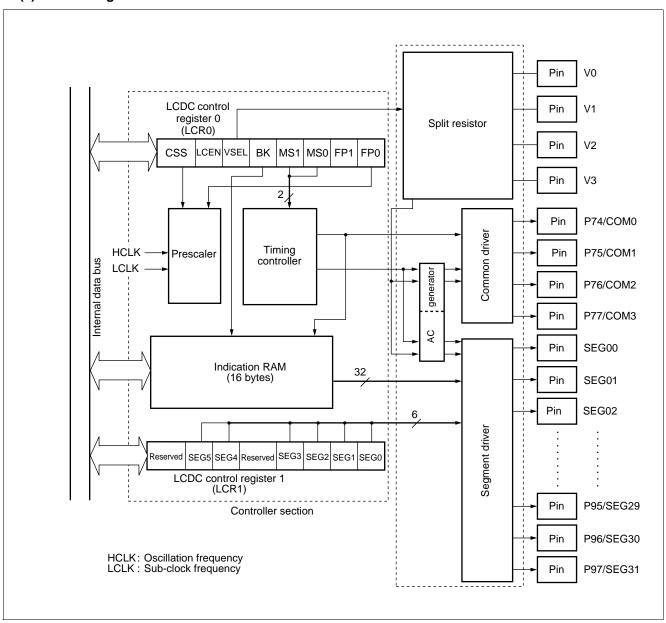

• Block Diagram



15. Clock Timer

The clock timer control register (WTC) controls operation of the clock timer, and time for an interval interrupt.


(1) Register Configuration



16.LCD Controller/Driver

The LCD (liquid crystal display) controller/driver, which contains a 16-byte display data memory, controls LCD indication using four common output pins and 32 segment output pins. It can select three types of duty output and directly drive the LCD panel.

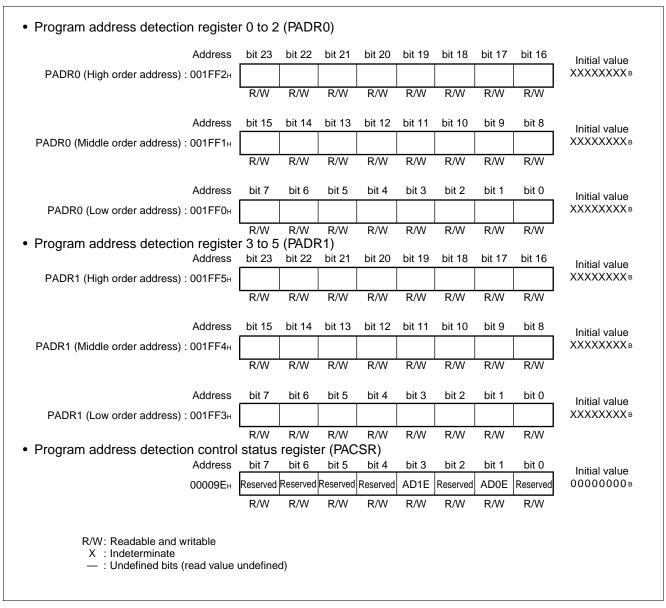
17. Communications Prescaler Register

This register controls machine clock division.

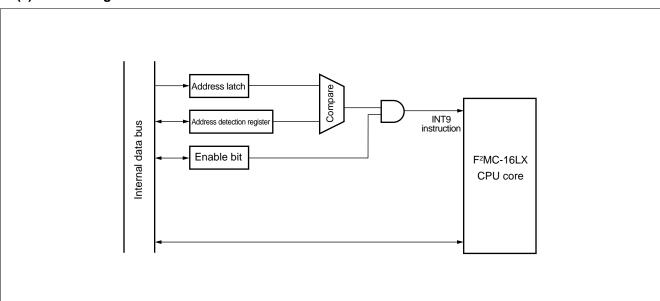
Output from the communications prescaler register is used for UART (SCI) and extended I/O serial interface.

The communications prescaler register is so designed that a constant baud rate may be acquired for various machine clocks.

(1) Register Configuration

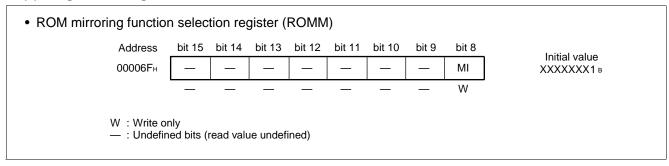

Communications prescaler control register (CDCR) Address											
Address	MD	DIC 14	DIC 13	DIC 12	DIV3	DIV2	DIV1	DIV0	Initial value		
000027н	R/W				R/W	R/W	R/W	R/W	0XXX1111в		
R/W: Readable and writable — : Undefined bits (read value undefined)											

18. Address Match Detection Function

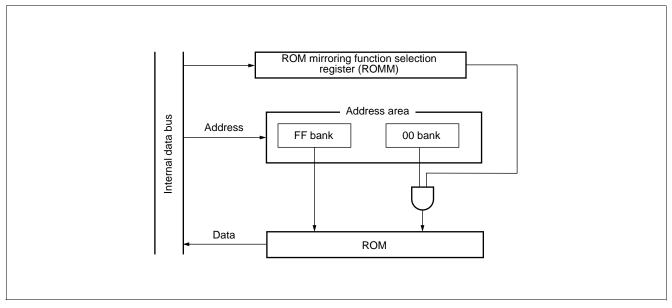

When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program patching function to be implemented.

Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at "1," the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register Configuration


(2) Block Diagram

19. ROM Mirroring Function Selection Module


The ROM mirror function select module enables the ROM data from the FF bank to be read also from the 00 bank.

(1) Register Configuration

Note: Do not access this register during operation at addresses 004000H to 00FFFFH.

(2) Block Diagram

20. Low-power Consumption (Stand-by) Mode

The F^2MC -16LX has the following CPU operating modes configured by selection of an operating clock and clock operation control.

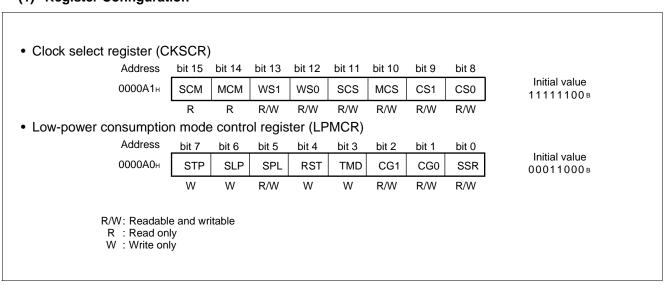
Clock mode

PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation clock.

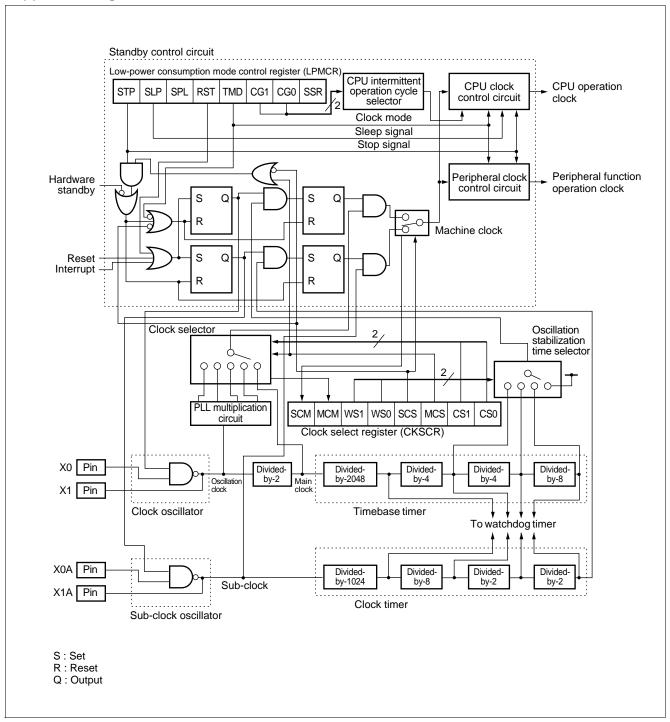
Main clock mode: A mode in which the CPU and peripheral equipment are driven by drivided-by-2 of the oscillation clock. The PLL multiplication circuits stops in the main clock mode.

Sub-clock mode

The sub-clock mode causes the CPU to operate only with the sub-clock. This mode uses the sub-clock frequency divided by four as the operating clock frequency while stopping the main clock and PLL clock.

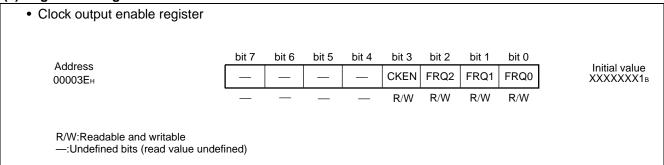

• CPU intermittent operation mode

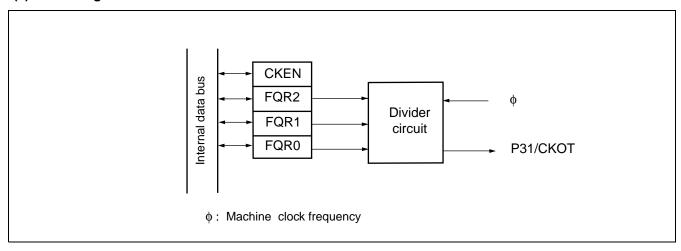
The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high speed.


• Hardware stand-by mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply to the CPU by the low-power consumption control circuit (sleep mode), stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware stand-by mode). Of these modes, modes other than the PLL clock mode are low power consumption modes.

(1) Register Configuration


(2) Block Diagram


21.Clock Monitor Function

The clock monitor function outputs the frequency-divided machine clock signal (for monitoring purposes) from the CKOT pin.

(1) Register configuration

(2) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Davamatar	Symbol	Ra	ting	Unit	Domonico
Parameter	Symbol	Min.	Max.	Offic	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	*1
Power supply voltage	AVRH, AVRL	Vss-0.3	Vss + 6.0	V	*1
	DVcc	Vss-0.3	Vss + 6.0	V	*2
Input voltage	Vı	Vss-0.3	Vcc + 6.0	V	*3
Output voltage	Vo	Vss-0.3	Vcc + 6.0	V	*3
"L" level maximum output current	loL		15	mA	*4
"L" level average output current	lolav		4	mA	*5
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	ΣΙοιαν		50	mA	*6
"H" level maximum output current	Іон		-15	mA	*4
"H" level average output current	І онаv		-4	mA	*5
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	ΣΙομαν		-50	mA	*6
Power consumption	PD		300	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

^{*1:} AVcc, AVRH, AVRL, and DVcc shall never exceed Vcc. AVRL shall never exceed AVRH.

Note: Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} Vcc≥ AVcc≥ DVcc≥ 3.0V

^{*3:} V_I and V_O shall never exceed V_{CC} + 0.3 V.

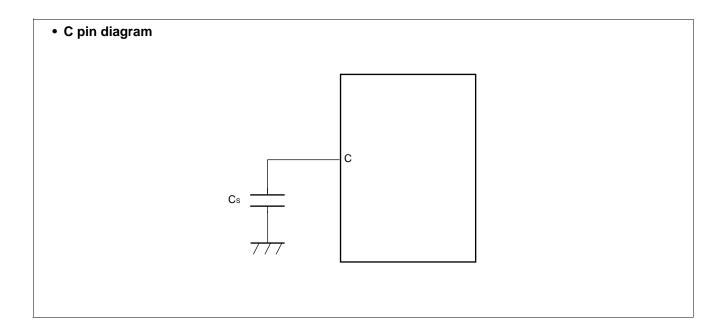
^{*4:} The maximum output current is a peak value for a corresponding pin.

^{*5:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*6:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)


Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Offic	Remarks
	Vcc	3.0	5.5	V	Normal operation (MB90522, MB90523)
Power supply voltage	Vcc	4.0	5.5	V	Normal operation (MB90F523) Guaranteed frequency = 10 MHz at 4.0 V to 4.5V
	Vcc	3.0	5.5	V	Retains status at the time operation stops
Smoothing capacitor	Cs	0.1	1.0	μF	*
Operating temperature	TA	-40	+85	°C	

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, TA = -40°C to $+85^{\circ}\text{C}$)

Parameter	Symbol	Pin name	Condition	1 = 1070,7	Value	0.0 1, 1	Unit	Remarks
Faranielei	Syllibol	Fili lialile	Condition	Min.	Тур.	Max.	Oilit	Neillai K5
"H" level input voltage	Vihs	P20 to P27, P30 to P37, P53, P54, P70 to P77, P80 to P87, PA0 to PA7,	Vcc = 3.0 V to 5.5 V	0.8 Vcc	_	Vcc + 0.3	V	
	Vінм	MD0 to MD2	(MB90523)	Vcc - 0.3	_	Vcc + 0.3	V	
"L" level input voltage	Vils	P20 to P27, P30 to P37, P53, P54, P70 to P77, P80 to P87, PA0 to PA7,	Vcc = 4.0 V to 5.5 V (MB90F523)	Vss - 0.3	_	0.2 Vcc	V	
	VILM	MD0 to MD2		Vss - 0.3	_	Vss + 0.3	V	
"H" level output voltage	Vон	Other than P90 to P97	Vcc = 4.5 V, Іон = -2.0 mA	Vcc - 0.5	_	_	V	
"L" level output voltage	Vol	All output pins	Vcc = 4.5 V, loL = 2.0 mA	_	_	0.4	V	
Open-drain output leakage current	lleak	Output pin P90 to P97	_	_	0.1	5	μΑ	
Input leakage current	lı.	Other than P90 to P97	Vcc = 5.5 V, Vss < Vı < Vcc	-5	_	5	μА	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P40 to P47, RST, MD0, MD1	_	15	30	100	kΩ	
Pull-down resistance	Roown	MD2	_	15	30	100	kΩ	

(Continued)

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Danamatan	Comple of	Din	(AVCC = VCC = 5.0		Value			
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	Icc	Vcc	Internal operation at 16 MHz	_	30	40	mA	MB90522, MB90523
	Icc	Vcc	Vcc at 5.0 V Normal operation	_	85	130	mA	MB90F523
	Icc	Vcc	Internal operation at 16 MHz	_	35	45	mA	MB90522, MB90523
	Icc	Vcc	Vcc at 5.0 V A/D converter operation	_	90	140	mA	MB90F523
	Icc	Vcc	Internal operation at 16 MHz	_	40	50	mA	MB90522, MB90523
Ic	Icc	Vcc	Vcc at 5.0 V D/A converter operation	_	95	145	mA	MB90F523
	Icc	Vcc	When data is written or erased in flash mode	_	95	140	mA	MB90F523
	Iccs	Vcc	Internal operation at 16 MHz	_	7	12	mA	MB90522, MB90523
supply	Iccs	Vcc	Vcc at 5.0 V In sleep mode	_	25	30	mA	MB90F523
current*	Iccl	Vcc	Internal operation at 8 kHz	_	0.1	1.0	mA	MB90522, MB90523
	Iccl	Vcc	Vcc at 5.0 V T _A = +25°C Subsystem operation	_	4	7	mA	MB90F523
	Iccls	Vcc	Internal operation at 8 kHz	_	30	50	μА	MB90522, MB90523
	Iccls	Vcc	Vcc at 5.0 V T _A = +25°C In subsleep mode	_	0.1	1	mA	MB90F523
	Ісст	Vcc	Internal operation at 8 kHz	_	15	30	μΑ	MB90522, MB90523
	Ісст	Vcc	Vcc at 5.0 V T _A = +25°C In clock mode	_	30	50	μА	MB90F523
	Іссн	Vcc	T _A = +25°C In stop mode	_	5	20	μА	MB90522, MB90523
	Іссн	Vcc	in stop mode	_	0.1	10	μΑ	MB90F523
Input capacitance	Cin	Other than AVcc, AVss, C, Vcc, Vss	_	_	10	80	pF	

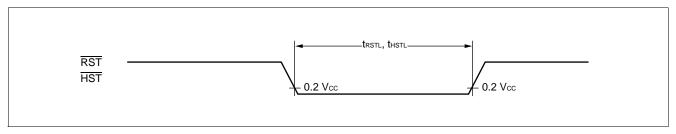
(Continued)

(Continued)

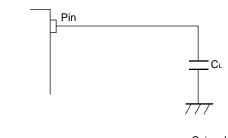
 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
Parameter	Symbol	Pili lialile	Condition	Min.	Тур.	Max.	Onn	Remarks
LCD split resistor	RLCD	V0 to V1, V1 to V2, V2 to V3	_	50	100	200	kΩ	
Output impedance for COM0 to COM3	Rvcом	COM0 to COM3	-V1 to V3 = 5.0 V	_	_	2.5	kΩ	
Output impedance for SEG00 to SEG31	Rvseg	SEG00 to SEG31	V 1 to V3 = 5.0 V	_	_	15	kΩ	
LCDC leak current	ILCDC	V0 to V3, COM1 to COM3, SEG00 to SEG31	_	_	_	±5	μА	

^{* :} The current value is preliminary and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.


4. AC Characteristics

(1) Reset, Hardware Standby Input Timing


 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

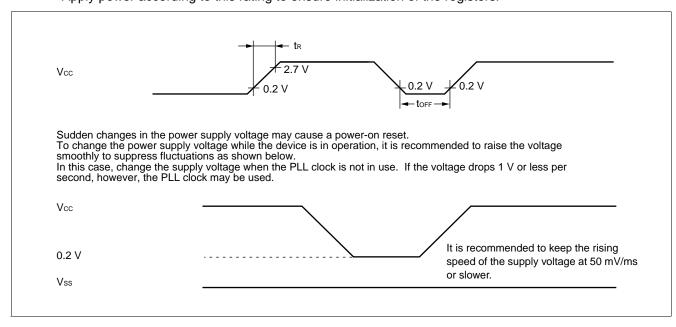
Parameter	Symbol	Din nama	Condition	Va	lue	Unit	Remarks	
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Offic	Remarks	
Reset input time	t rstl	RST		4 tcp*	_	ns		
Hardware standby input time	t HSTL	HST		4 tcp*	_	ns		

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

• Measurement conditions for AC ratings

 C_L is a load capacitance connected to a pin under test. C_L of 80 pF must be connected to address data bus (AD15 to AD00).

(2) Specification for Power-on Reset

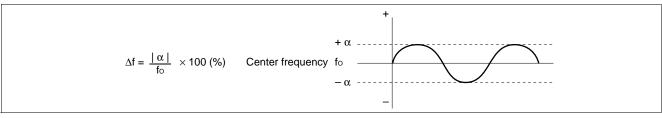

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Din nama	Condition	Va	lue	Unit	Remarks	
Farameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Oiiit		
Power supply rising time	t R	Vcc		0.05	30	ms	*	
Power supply cut-off time	toff	Vcc	<u> </u>	4	_	ms	Due to repeated operations	

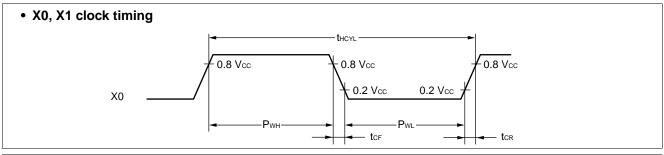
^{*:} Vcc must be kept lower than 0.2 V before power-on.

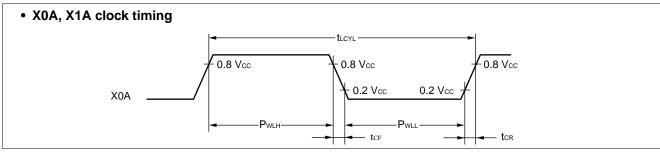
Notes: • The above ratings are values for causing a power-on reset.

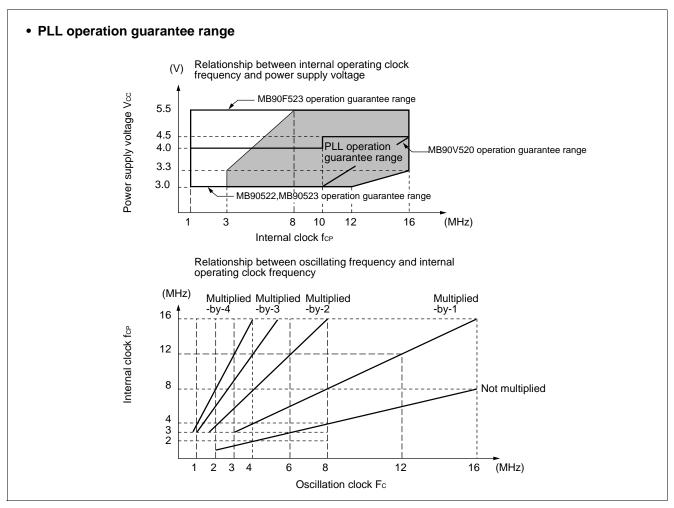
• There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.



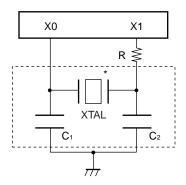
(3) Clock Timings


(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, TA = -40°C to $+85^{\circ}\text{C}$)


Doromotor	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Тур.	Max.	Ullit	Remarks
	Fc	X0, X1	_	3	_	16	MHz	
Clock frequency	Fc	X0, X1	4.0 V to 4.5 V	3	_	10	MHz	MB90F523
	FcL	X0A, X1A			32.768		kHz	
	t HCYL	X0, X1		62.5	_	333	ns	
Clock cycle time	t HCYL	X0, X1	4.0 V to 4.5 V	100	_	333	ns	MB90F523
	t LCYL	X0A, X1A	_		30.5		μs	
Input clock pulse width	PwH, PwL	X0	_	10	_	_	ns	Recommended duty ratio of 30% to 70%
	Pwlh, Pwll	X0A	_	_	15.2	_	μs	
Input clock rising/falling time	tcr, tcf	X0, X0A	_	_	_	5	ns	External clock operation
	f CP	_	_	1.5	_	16	MHz	When the main clock is used
Internal operating clock frequency	f CP	_	4.0 V to 4.5 V	1.5	_	10	MHz	When the main clock is used
inequency	fLCP	_	_	_	8.192	_	kHz	When the subclock is used
	t CP	_	_	62.5	_	333	ns	When the main clock is used
Internal operating clock cycle time	t CP	_	4.0 V to 4.5 V	100	_	333	ns	When the main clock is used
ume	tlcp	_	_	_	122.1	_	μs	When the subclock is used
Frequency fluctuation rate locked	Δf	_	_	_	_	5	%	*


* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$," thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).



The AC ratings are measured for the following measurement reference voltages.

(4) Recommended Resonator Manufacturers

• Sample application of ceramic resonator

• Mask ROM product (MB90522, MB90523)

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	CSA2.00MG040	2.00	100	100	Not required
	CSA4.00MG040	4.00	100	100	Not required
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.00	30	30	Not required
Wing. 00., Ltd.	CSA16.00MXZ040	16.00	15	15	Not required
	CSA32.00MXZ040	32.00	5	5	Not required
	CCR3.52MC3 to CCR6.96MC3	3.52 to 6.96	Built-in	Built-in	Not required
TDK Corporation	CCR7.0MC5 to CCR12.0MC5	7.00 to 12.00	Built-in	Built-in	Not required
	CCR20.0MSC6 to CCR32.0MSC6	20.00 to 32.00	Built-in	Built-in	Not required

(Continued)

(Continued)

• Flash ROM product (MB90F523)

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	CSA2.00MG040	2.00	100	100	Not required
Murata Mfg. Co., Ltd.	CSA4.00MG040	4.00	100	100	Not required
	CSA8.00MTZ	8.00	30	30	Not required
Wing. Oo., Ltd.	CSA16.00MXZ040	16.00	15	15	Not required
	CSA32.00MXZ040	32.00	5	5	Not required
	CCR3.52MC3 to CCR6.96MC3	3.52 to 6.96	Built-in	Built-in	Not required
TDK Corporation	CCR7.0MC5 to CCR12.0MC5	7.0 to 12.0	Built-in	Built-in	Not required
	CCR20.0MSC6 to CCR32.0MSC6	20.0 to 32.0	Built-in	Built-in	Not required

Inquiry: Murata Mfg. Co., Ltd..

• Murata Electronics North America, Inc.: TEL 1-404-436-1300

• Murata Europe Management GmbH: TEL 49-911-66870

• Murata Electronics Singapore (Pte.): TEL 65-758-4233

TDK Corporation

• TDK Corporation of America

Chicago Regional Office: TEL 1-708-803-6100

• TDK Electronics Europe GmbH

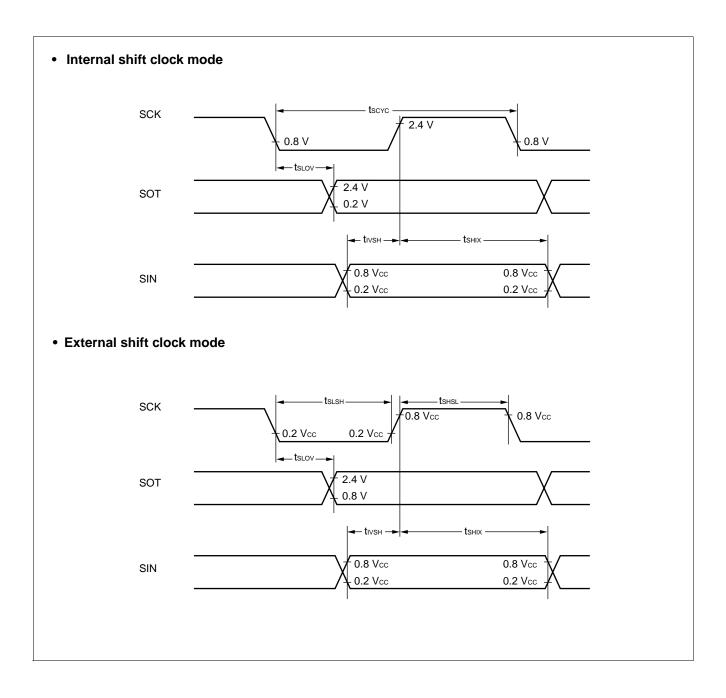
Components Division: TEL 49-2102-9450

• TDK Singapore (PTE) Ltd.: TEL 65-273-5022

• TDK Hong Kong Co., Ltd.: TEL 852-736-2238

• Korea Branch, TDK Corporation: TEL 82-2-554-6636

(5) UART (SCI) Timing

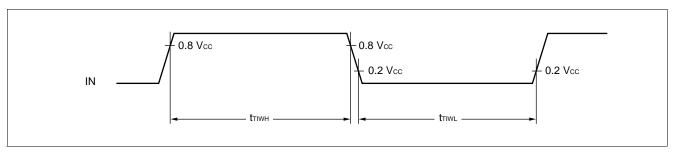

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Val	lue	Unit	Remarks
raiailletei	Symbol	i ili ilalile	Condition	Min.	Max.	Oilit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp*	_	ns	
$\begin{array}{c} SCK \downarrow \to SOT \ delay \\ time \end{array}$	tslov	SCK0 to SCK2, SOT0 to SOT2	Internal shift clock mode C _L = 80 pF + 1 TTL for an	- 80	80	ns	
Valid SIN → SCK ↑	tivsh	SCK0 to SCK2, SIN0 to SIN2		100	_	ns	
$SCK \uparrow \rightarrow valid SIN$ hold time	tsнıx	SCK0 to SCK2, SIN0 to SIN2	output pin	60	_	ns	
Serial clock "H" pulse width	tshsl	SCK0 to SCK2		4 tcp*	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK2	External shift	4 tcp*	_	ns	
$\begin{array}{c} SCK \downarrow \to SOT \; delay \\ time \end{array}$	tslov	SCK0 to SCK2 SOT0 to SOT2	clock mode C∟ = 80 pF + 1 TTL for an		150	ns	
Valid SIN → SCK \uparrow	tıvsh	SCK0 to SCK2, SIN0 to SIN2	output pin	60	_	ns	
$SCK \uparrow \rightarrow valid SIN$ hold time	t shix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

Notes: • These are AC ratings in the CLK synchronous mode.

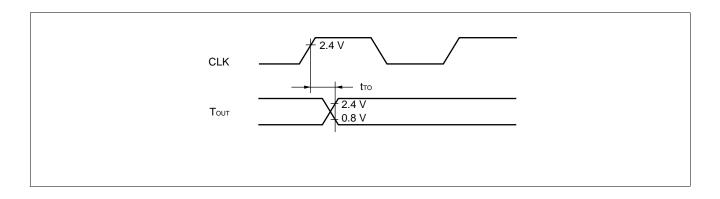
[•] C_L is the load capacitor value connected to pins while testing.



(6) Timer Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
raiailletei	Syllibol	Fili Haine	Condition	Min.	Max.	Oilit	iveillai ks
Input pulse width	tтıwн, tтıwL	IC00,IC01,IC10, IC11,TI0, TI1	_	4 tcp*	_	ns	


*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

(7) Timer Output Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

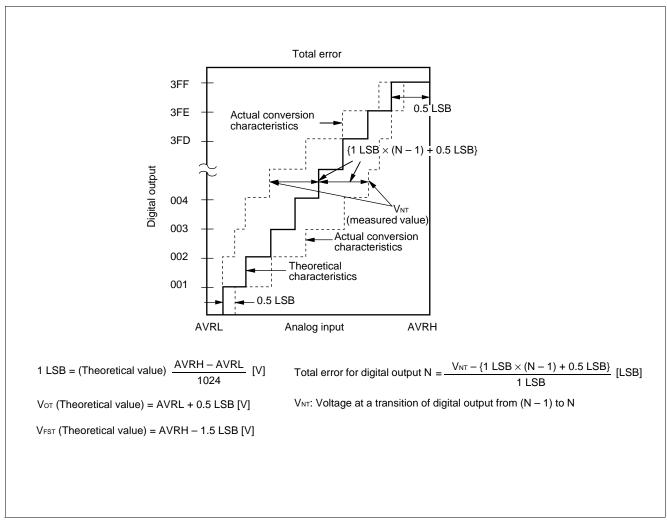
Parameter	Symbol	Pin name	Condition	Va	lue	Llnis	Remarks
Farameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Oilit	
CLK ↑ → Touт transition time	t TO	OUT0 to OUT3, PG00, PG01,PG10, PG11	_	30	_	ns	

5. A/D Converter

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = 0.0 V, $3.0 \text{ V} \le \text{AVRH} - \text{AVRL}$, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)

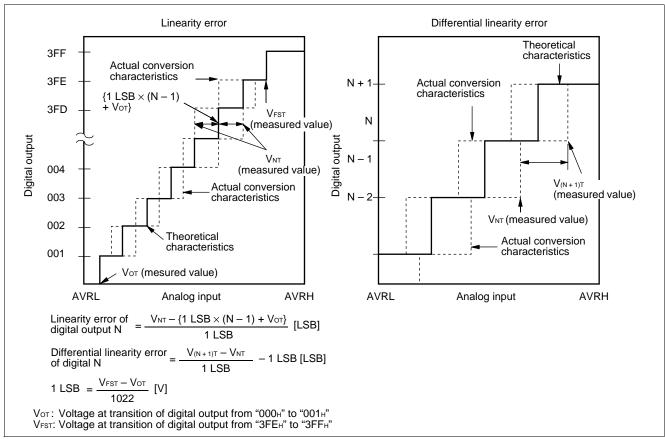
Parameter	Symbol	Pin name	Condition		Unit		
Parameter	raiametei Symbol Fin hame Condition		Condition	Min.	Тур.	Max.	Oilit
Resolution	_	_		_	8/10	_	bit
Total error	_	_			_	±5.0	LSB
Non-linear error	_	_		_	_	±2.5	LSB
Differential linearity error	_	_		_	_	±1.9	LSB
Zero transition voltage	Vот	AN0 to AN7		AVss -3.5 LSB	+0.5 LSB	AVss +4.5 LSB	mV
Full-scale transition voltage	V _{FST}	AN0 to AN7		AVRH -6.5LSB	AVRH -1.5 LSB	AVRH +1.5 LSB	mV
Conversion time	_	_	Vcc = 5.0 V ±10% at machine clock of 16 MHz	240 tcp*	_	_	ns
Sampling time	_	_	Vcc = 5.0 V ±10% at machine clock of 16 MHz	64 tcp*	_	_	ns
Analog port input current	Iain	AN0 to AN7		_	_	10	μΑ
Analog input voltage	VAIN	AN0 to AN7		AVRL	_	AVRH	V
Reference	_	AVRH	_	AVRL + 2.7	_	AVcc	V
voltage	_	AVRL		0	_	AVRH -2.7	V
	IA	AVcc			5	_	mΑ
Power supply current	Іан	AVcc	Supply current when CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_		5	μΑ
	IR	AVRH	_	_	400	_	μΑ
Reference voltage supply current	IRH	AVRH	Supply current when CPU stopped and 8/10-bit A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μΑ
Offset between channels		AN0 to AN7	_			4	LSB

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."


6. A/D Converter Glossary

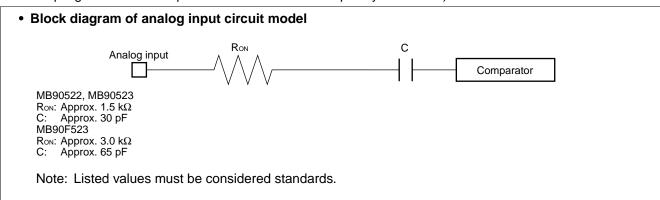
Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0000") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error, full-scale transition error and linearity error.

(Continued)



7. Notes for A/D Conversion

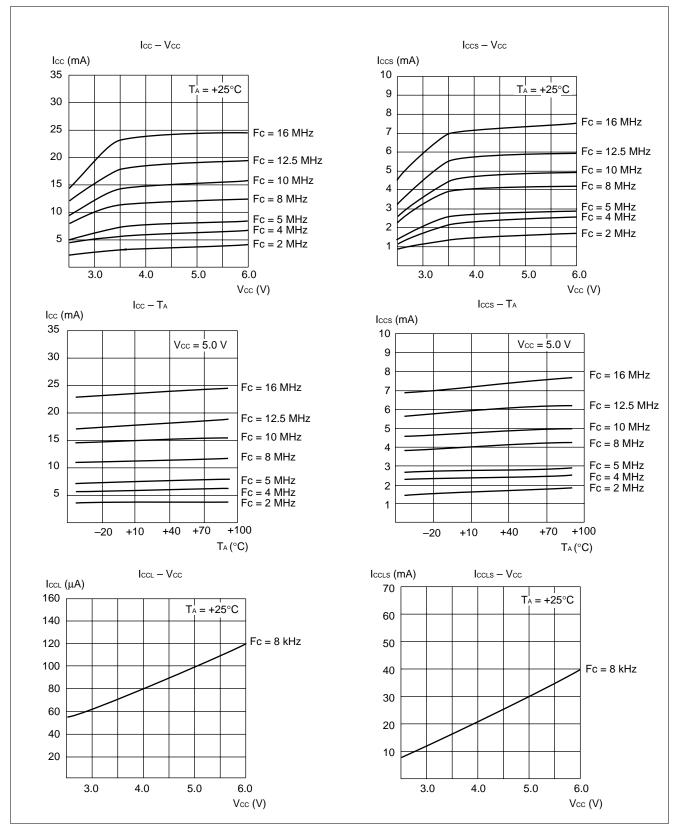
Analog inputs should have external circuit impedance of approximately $5 \text{ k}\Omega$ or less.

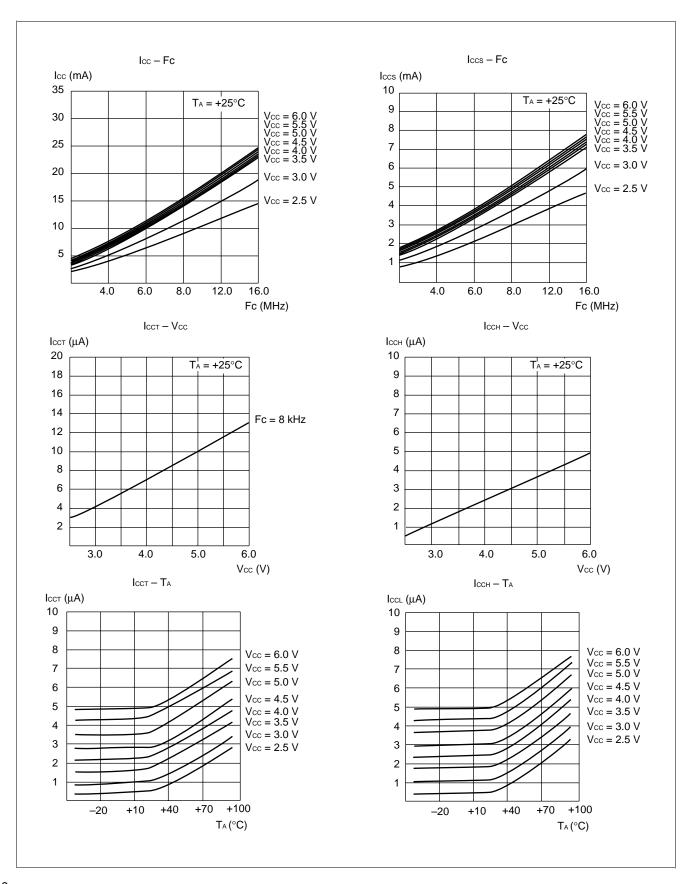
External capacitance, if used, should be several thousand times the level of the chip's internal capacitance in consideration of the effects of partial potential between the external and internal capacitance.

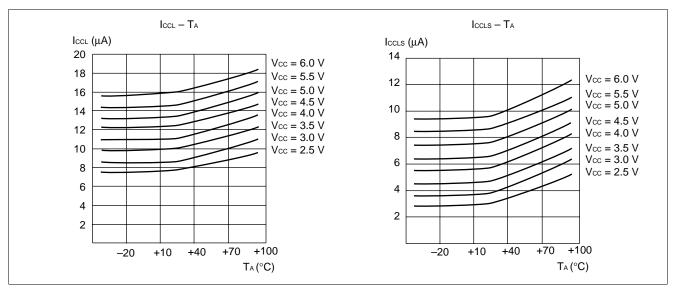
If the impedance of the external circuit is too high, the analog voltage sampling interval may be insufficient (using a sampling interval of 4.00 µs and a machine clock frequency of 16 MHz).

Error

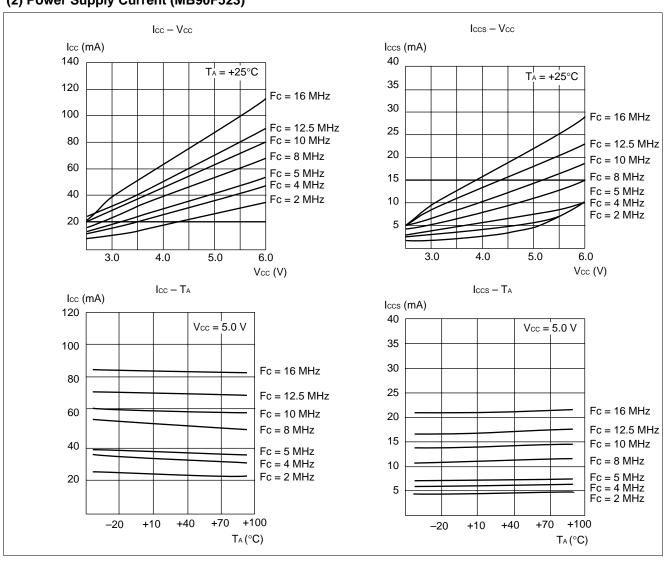
The smaller | AVRH - AVRL | is, the greater the error is.

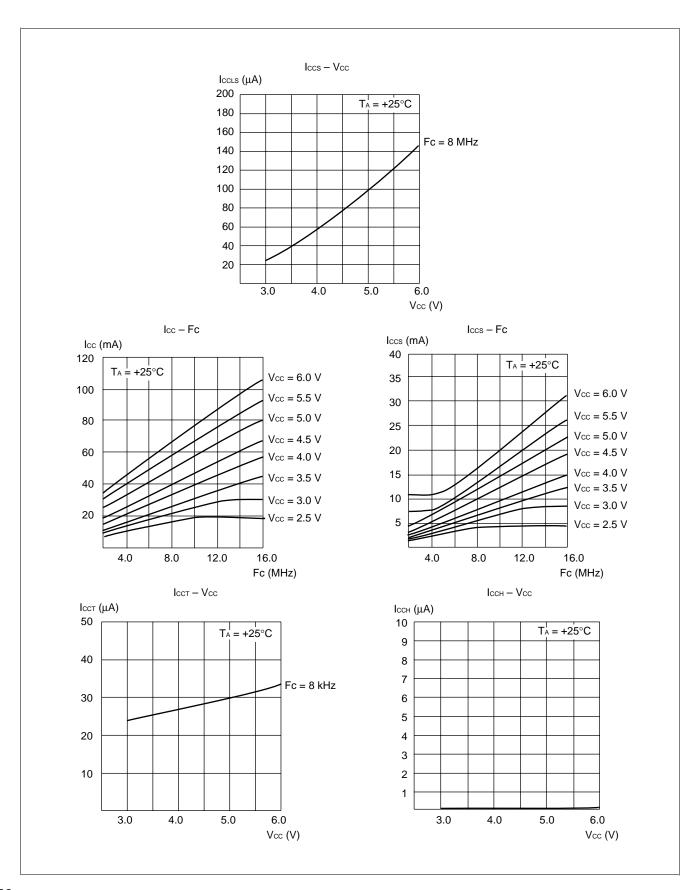

8. D/A Converter

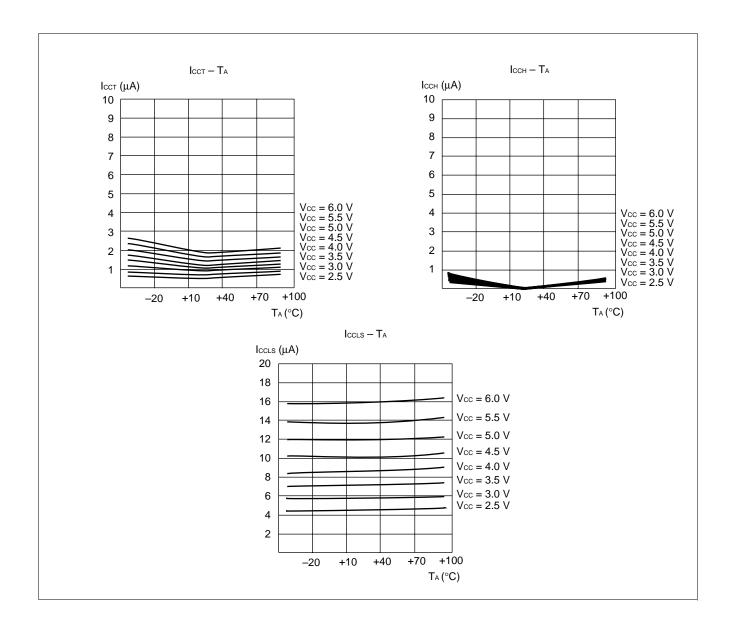

(AVcc = Vcc = $5.0 \text{ V} \pm 10\%$, AVss = Vss = DVss = 0.0 V, TA = -40°C to $+85^{\circ}\text{C}$)


Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Syllibol	Pili lialile	Min.	Тур.	Max.	Unit	Remarks
Resolution	_	_	_	8	_	bit	
Differential linearity error	_	_		_	±0.9	LSB	
Absolute accuracy	_	_	_	_	±1.2	%	
Linearity error	_	_	_	_	±1.5	LSB	
Conversion time	_	_	_	10	20	μs	Load capacitance: 20 pF
Analog reference voltage	_	DVcc	Vss + 3.0	_	AVcc	V	
Reference voltage	I _{DVR}	DVcc	_	_	300	μΑ	
supply current	Idvrs	DVcc	_	_	10	μΑ	In sleep mode
Analog output impedance	_	_	_	20	_	kΩ	

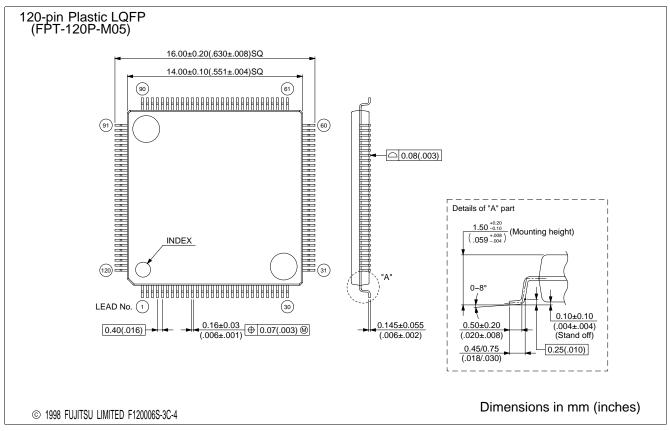
■ EXAMPLE CHARACTERISTICS

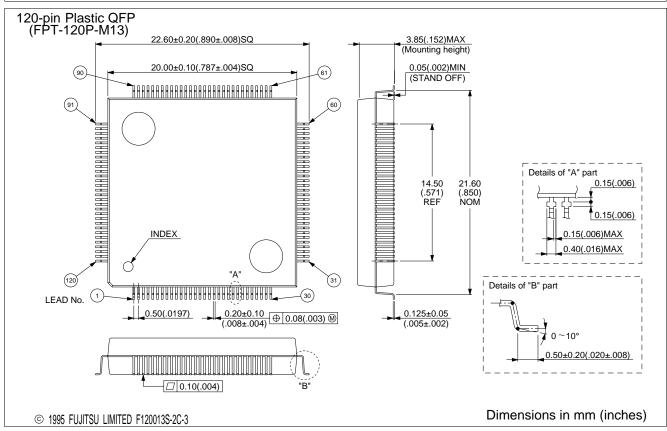

(1) Power Supply Current (MB90523)





(2) Power Supply Current (MB90F523)





■ ORDERING INFORMATION

Part number	Package	Remarks
MB90523PFF MB90522PFF MB90F523PFF	120-pin Plastic LQFP (FPT-120P-M05)	
MB90523PFV MB90522PFV MB90F523PFV	120-pin Plastic QFP (FPT-120P-M13)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,

Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park,

Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280

Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0012

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.